&) CUAHSI

universities allied for water research

HIS document 5

CUAHSI WaterOneFlow
Workbook
(version 1.1)

A guide to using CUAHSI’s WaterOneFlow web services
to retrieve hydrologic time series data

January 2010

Prepared by:
Tim Whiteaker

Center for Research in Water Resources
University of Texas at Austin

Distribution
Copyright © 2008 University of Texas at Austin

CUAHSI’s WaterOneFlow web services are documented at the following URL.:
http://his.cuahsi.org/wofws.html

Disclaimers

Although much effort has been expended in the development and testing of the
WaterOneFlow, errors and inadequacies may still occur. Users must make the
final evaluation as to the usefulness of WaterOneFlow for his or her application.

Acknowledgements

The team of engineers, scientists and research assistants that contributed to this
document includes:

Tim Whiteaker (editor), Research Associate, Center for Research in Water
Resources, University of Texas, Austin, TX.

David Tarboton, Professor, Civil and Environmental Engineering, Utah State
University, Logan, UT.

Jon Goodall, Assistant Professor, Nicholas School of the Environment and Earth
Sciences, Duke University, Durham, NC.

David Valentine, GIS Programmer, San Diego Supercomputer Center, University
of California at San Diego, La Jolla, CA.

Ernest To, Doctoral Candidate, Center for Research in Water Resources,
University of Texas, Austin, TX.

Bora Beran, Doctoral Candidate, Computational Hydraulics Lab, Drexel
University, Philadelphia, PA.

Funding

Funding for this document was provided by the Consortium of Universities for the
Advancement of Hydrologic Science, Inc. (CUAHSI) under NSF Grant No. EAR-
0413265. In addition, much input and feedback has been received from the
CUAMHSI Hydrologic Information System development team. Their contribution is
acknowledged here.

http://his.cuahsi.org/wofws.html

Table of Contents

DIStHIDULION ... i
DISCIAIMENTS ... i
ACKNOWIBAGEMENTS ..o i
1.0 INErOAUCTION ..o 1
1.1 WaterOneFIoW WED SEIVICESc.voiiiiiiiiiicie it 1
1.2 WaterOneFlow Web Service Methods and OULPUL.............ccceriiiiiiieieieee e 2
1.2.1 GetSiteInfo/GetSiteINfOODJECTcveivieieece e 3
1.2.2 GetVariableInfo/GetVariableINfOODBJECtccoviiiiiiiiiiiee 3
1.2.3 GetValues/GetValueSODJECE........ccv i 4
1.3 DOCUMENT OULIING ...ttt reenee e 5
1.4 Obtaining ThiS WOIKDOOK............cceiiiiiiiiicece e 6
2.0 Dala SOUFCESccovviiieee e e eitiiee e e st e et e e e et e e e e e e e e e s s nnnnnes 7
2.1 USGS National Water Information System (NWIS)cccccovveiiiieiiieie e 7
2.2 Moderate Resolution Imaging Spectroradiometer (MODIS)........cccocvevvvieiiveieiieseeiens 7
3.0 Connecting Excel to WaterOneFlow with HydroExcel............... 9
4.0 Ingesting Weather and Streamflow Data into ArcGIS with
HYAFrOGET ... e 12
5.0 Plotting MODIS Data with Matlabccccccoviiiiciiie, 14
T80 A 1011 T [t o o S 14
5.2 Computer and SKill REQUIFEMENTSoiveiiiiiiiiieieieiee e 14
o TOC B o (00T L1 -SSR 14
5.3.1 Setting uUp the XIML Parserccocieiiiieiie sttt 14
5.3.2 RetrieViNng MODIS Dataccccoueiiiiieiieiiiisieeieeee s 15
6.0 Ingesting NWIS Data using VB.Netc.cccccvveiiinie e 21
6.1 INEFOTUCTION ...ttt ettt e st snee e 21
6.2 Computer and SKill REQUITEMENTScoviiiiiiiiiiieeee s 21
6.3 Accessing NWIS Data with a VB.Net Windows Applicationc.ccccevvveiieeiiieiinnns 21
6.3.1 Setting UP the PrOJECT........eiiiieieieie e 21
6.3.2 Creating the Web ReferenCecooivieiii i 22
6.3.3 Building the User INterface.........ccoviiiiiiiiie et 23
6.3.4 WIITING the COUB.......oitiieiiiiiieieie bbb 26

6.3.5 RUNNING the COUR ...c.veeiiiie e e 28

7.0 Ingesting NWIS Data UsiNg Java..........ccccceeevveeeiieeciiee e 29
7.1 Computer and SKill REQUIFEMENTScoviiiiiiiiiiieieee s 29
A (0 1ot To L1 -SSR 29

7.2.1 Creating @ NEW PrOJECTcciiiiiiieie e 29
7.2.2 Creating a Web Service CHENt........cccciiieiieiice e 30
7.2.3 Creating a Class to Consume the Web Service.........ccccvvviiiienenienese e 32

Appendix A: Source Code for parse XmL.m.......ccccooevvieeiiieecineeenne, 40

Appendix B: Source Code for MODISPlot_ xml.m...........ccoeevvnenee 46

Appendix C: Source Code for nwis.java Class..........ccccocvvvveiiinennnnnn, 48

1.0 Introduction

One of the key programs of the Consortium of Universities for the Advancement of Hydrologic
Science (CUAHSI) is the development of Hydrologic Information Systems (HIS), which
facilitate the integration of data and software to support hydrologic science. A main component
of CUAHSI HIS is WaterOneFlow web services, which provide programmatic access to a
growing collection of national, state, and individual investigator hydrologic observation
repositories. This document describes how to use WaterOneFlow web services and methods,
with tutorials providing examples of data access in a variety of software environments.

1.1 WaterOneFlow Web Services
Wikipedia gives the following definition for a web service:

According to the W3C a Web service is a software system designed to support
interoperable machine-to-machine interaction over a network. It has an interface that is
described in a machine-processable format such as WSDL. Other systems interact with
the Web service in a manner prescribed by its interface using messages, which may be
enclosed in a SOAP envelope, or follow a RESTful approach.

When a web service is published on the Internet, a computer with an Internet connection can call
upon the web service to perform useful work.

CUAMHSI WaterOneFlow web services facilitate the retrieval of hydrologic observations data.
While several repositories of national hydrologic data are already available online, each data
provider uses its own methodology for querying data, and its own output format for returning
data. WaterOneFlow web services provide a common methodology and output format for these
data sources, and permit data access directly from within the user’s preferred software
environment, rather than requiring the user to navigate to the data provider’s web page, query
data, and save the data locally.

WaterOneFlow web services have been developed for the following national networks:

USGS National Water Information System (NWIS) — national database of streamflow, water
quality, and groundwater data

http://water.sdsc.edu/waterOneFlow/NWI1S/DailyValues.asmx
http://water.sdsc.edu/waterOneFlow/NWIS/UnitValues.asmx
http://water.sdsc.edu/waterOneFlow/NWI1S/Data.asmx
http://water.sdsc.edu/waterOneFlow/NWIS/Groundwater.asmx

EPA STORET - national database of water quality data
http://water.sdsc.edu/waterOneFlow/EPA/cuahsi 1 0.asmx

Daymet — daily surfaces of temperature, precipitation, humidity, and radiation for the contiguous
United States
http://water.sdsc.edu/waterOneFlow/DAYMET/Service.asmx

http://water.sdsc.edu/waterOneFlow/NWIS/DailyValues.asmx
http://water.sdsc.edu/waterOneFlow/NWIS/UnitValues.asmx
http://water.sdsc.edu/waterOneFlow/NWIS/Data.asmx
http://water.sdsc.edu/waterOneFlow/NWIS/Groundwater.asmx
http://water.sdsc.edu/waterOneFlow/EPA/cuahsi_1_0.asmx
http://water.sdsc.edu/waterOneFlow/DAYMET/Service.asmx

MODIS - remotely sensed meteorological, oceanographic, and hydrologic data for the world
http://water.sdsc.edu/waterOneFlow/MODIS/Service.asmx

North American Mesoscale model (NAM) — prediction of climate variables for North America
http://water.sdsc.edu/waterOneFlow/NAM12k/Service.asmx

To access a catalog of networks currently available through WaterOneFlow, visit HIS Central at
http://water.sdsc.edu/centralhis/.

1.2 WaterOneFlow Web Service Methods and Output

To standardize access to these data sources, WaterOneFlow web services implement the
following core methods regardless of data provider:

e GetSitelnfo
e GetSitelnfoObject

e GetVariablelnfo
e GetVariableInfoObject

e GetValues
e GetValuesObject

In addition to consistent method names, WaterOneFlow services use consistent method
signatures, and provide output in a consistent format, regardless of data provider. Thus, if you
learn how to use the WaterOneFlow services for NWIS, you should easily be able to make the
jump to using the WaterOneFlow service for EPA STORET.

For the methods with the suffix “Object” in the method name, data are returned in object format.
For the other methods, data are returned in XML format. Both Object and XML formats are
provided to suit the developer’s preference, or to accommodate the application programming
environment of the developer.

NOTE: All methods include an authorization token parameter (authToken). This token permits
CUAHSI to restrict access to web services. For the services described in this workbook, any
authorization token will work, as all of these services are publicly available.

General documentation about CUAHSI web services can be found at
http://his.cuahsi.org/wofws.html.

Below is a brief summary of the core WaterOneFlow methods.

http://water.sdsc.edu/waterOneFlow/MODIS/Service.asmx
http://water.sdsc.edu/waterOneFlow/NAM12k/Service.asmx
http://water.sdsc.edu/centralhis/
http://his.cuahsi.org/wofws.html

1.2.1 GetSitelnfo/GetSitelnfoObject

This method returns basic information about a site, such as its name, location, and a list of
variables available at the site for time series retrieval. The method has the following signature:

GetSiteInfo (String location, String authToken)

Input Parameters:

location

For networks which measure data at discrete sites, such as NWIS, this location parameter should
be written as “NetworkName:SiteCode”. For example, to specify the NWIS stream gage at the
Colorado River at Austin (site code 08158000), use the following value for the location
parameter:

"NWIS:08158000"

For networks that return a time series for any point in space (such as Daymet), use the
convention “GEOM:POINT(Longitude Latitude)”. For example, to specify a point at 113
degrees West Longitude and 45 degrees North Latitude, use the following value for the location
parameter:

"GEOM:POINT (-113 45)"

For networks that return a time series for a box defined by Latitude and Longitude coordinates
(such as MODIS), use the convention “GEOM:BOX(WestLongitude SouthLatitude,
EastLongitude NorthLatitude)”. For example, to specify a box that covers the whole earth, use
the following value for the location parameter:

"GEOM:BOX (-180 -90,180 S0)"

authToken

This parameter allows a data provider to restrict or monitor access to its web services, by
requiring a password or some other means of identification in order to use a given web method.
In many cases, this paramter may be left as an empty string, “”

Example VB.Net Code

Dim ws As New [WsReference]
Dim result As String = ws.GetSiteInfo ("NWIS:08158000", "")
Debug.Write (result)

1.2.2 GetVariableInfo/GetVariablelnfoObject

This method returns information about a time series variable, such as name and units. The
method has the following signature:

GetVariableInfo(String variable, String authToken)

Input Parameters:

variable

To specify a variable, you must include both the network name and the variable code within the
network, in the following format: “NetworkName:VariableCode”. For example, to query the
NWIS website for information about variable code 00010 (which happens to be water
temperature), you would use the following value for the variable parameter:

"NWIS:00010"

authToken

This parameter allows a data provider to restrict or monitor access to its web services, by
requiring a password or some other means of identification in order to use a given web method.
In many cases, this paramter may be left as an empty string, “”

Example VB.Net Code

Dim ws As New [WsReference]
Dim result As String = ws.GetVariableInfo ("NWIS:00010", "")
Debug.Write (result)

1.2.3 GetValues/GetValuesObject

This method returns a time series for a given variable at a given location. The method has the
following signature:

GetValues (String location, String variable, String startDate, String endDate,
String authToken)

Input Parameters:
location
The location parameter is the same as for the GetSitelnfo method.

variable
The variable parameter is the same as for the GetVariableInfo method, except that this parameter
may also include options for data retrieval. The parameter should be specified as follows:

"NetworkName:VariableCode/Option=Value"

In most cases, no option is required, and the “NetworkName:VariableCode” format may be used.
Some networks, such as MODIS, do require an option to be set. As an example, to retrieve data
for Cloud Optical Thickness in the Water Phase from MODIS, for a spatial average that includes
both the land surface and the ocean, you would use the following value for the variable
parameter:

"MODIS:11/plotarea=landocean"

startDate

This parameter specifies the start datetime for which time series records are desired. For
networks that return time series with a temporal precision of one day or longer, use the following
format for the startDate:

"yyyy-mm-dd"

For example, to specify the last day of 2003 as the start date for time series retrieval, use the
following value for the startDate parameter:

"2003-12-31"

For networks with a temporal precision shorter than one day, you may specify the hours and
minutes and so on with the format below:

"yyyy-mm-ddThh:mm:ss"
For example, to specify 6:30 AM on the last day of 2003, use the following value:
"2003-12-31T06:30"

endDate
This parameter specifies the end datetime for which time series records are desired. The format
is the same as for the startDate parameter.

authToken

This parameter allows a data provider to restrict or monitor access to its web services, by
requiring a password or some other means of identification in order to use a given web method.
In many cases, this paramter may be left as an empty string, “”.

Example VB.Net Code

Dim ws As New [WsReference]
Dim result As String = ws.GetValues ("NWIS:08158000",
"NWIS:00010",

"2003-01-01",

"2003-12-31", _

"")

Debug.Write (result)

1.3 Document Outline

The document is created in the form of a series of tutorials. The tutorials show how to use
various software or programming environments to access different WaterOneFlow web services
and methods. The links for obtaining installation and data files for each tutorial are provided in
the tutorial. In the current version of the document, you will learn how to access data from USGS
NWIS and MODIS Matlab, VB.Net and Java. Web service access from Excel and ArcGIS is
also described, with links to specific software products built to facilitate those connections. The
outline of this document is as follows:

Chapter 1 — Introduction

Chapter 2 — Data Sources

Chapter 3 — Ingesting data into Excel (Introduction to HydroObjects and HydroExcel)
Chapter 4 — Ingesting data into ArcGIS (Introduction to HydroGET)

Chapter 5 — Ingesting data into Matlab (MODIS example)
Chapter 6 — Ingesting data using VB.Net (NWIS Unit Values example)
Chapter 7 — Ingesting data using Java (NWIS Daily Values example)

1.4 Obtaining This Workbook
This workbook is available at the following location:

http://his.cuahsi.org/documents/HISDoc5 UseWebServices.pdf

http://his.cuahsi.org/documents/HISDoc5_UseWebServices.pdf

2.0 Data Sources

This chapter describes the data sources behind WaterOneFlow web services used in this
workbook.

2.1 USGS National Water Information System (NWIS)
Data providing organization: United States Geological Survey (USGS)

Website: http://waterdata.usgs.gov/nwis

The USGS NWIS is a comprehensive and distributed program that supports acquisition,
processing and storage of water data. Most of the data stored in NWIS is available through
NWIS website provided above (NWIS Web). The data available via NWIS web mainly include
information on quantity and quality of surface and ground water. NWIS web serves both
historical and real time data. The real time data, however, is not available for all sites.

Data provided by NWISWeb are regularly updated from NWIS. Real-time data are generally
updated upon receipt at local Water Science Centers. NWISWeb provides access to data by
category, such as surface water, ground water, or water quality, and by geographic area. NWIS
data are available for all 50 states, plus border and territorial sites, and include data from as early
as 1899 (at few stations) to present. Of the over 1.5 million sites with NWIS data, the vast
majority (about 800,000) are for groundwater wells, about 25,000 sites are for streamflow data,
and about 9,800 of the sites provide real-time data. In addition there are many sites with
atmospheric data such as precipitation, and there are nearly 70 million water-quality results from
about 4 million water samples collected at hundreds of thousands of sites.

2.2 Moderate Resolution Imaging Spectroradiometer (MODIS)
Data providing organization: National Aeronautics and Space Administration (NASA)

Website: http://g0dup05u.ecs.nasa.qgov/Giovanni/modis.MOD08 M3.shtml

The Goddard Earth Sciences Data and Information Services Center (GES DISC) has created the
GES DISC Interactive Online Visualization and Analysis Infrastructure (Giovanni) to enable
Web-based visualization and analysis of satellite remotely sensed meteorological,
oceanographic, and hydrologic data. The MODIS data are available through one of the Giovanni
interfaces called the MODIS Online Visualization and Analysis (MOVAS). The MOVAS
system, operational since September 2003, provides access to download, visualize and analyze
MODIS Level-3 atmospheric monthly products. The MODIS Level-3 data includes monthly 1 x
1 degree grid average values of atmospheric parameters related to atmospheric aerosol particle
properties, total ozone burden, atmospheric water vapor, cloud optical and physical properties,
and atmospheric stability indices.

The data are available for the entire globe from March 1, 2000, to typically six months to a year
prior to the current date. The time series returned by MOVAS is spatially averaged over the

http://waterdata.usgs.gov/nwis
http://g0dup05u.ecs.nasa.gov/Giovanni/modis.MOD08_M3.shtml

extent specified by a bounding box of lat-long coordinates. The data are temporally averaged
with a monthly time step.

3.0 Connecting Excel to WaterOneFlow with HydroExcel

While WaterOneFlow web services support standardized, automated queries for hydrologic data,
they may be difficult to use for those who are uninitiated into the world of web services.
Therefore, CUAHSI HIS includes extensions to applications commonly used in hydrologic
science in order to connect those applications with WaterOneFlow. One of these applications is
HydroExcel, which utilizes an object library called HydroObjects in order to make dynamic
connections to web services.

HydroObjects

http://his.cuahsi.org/hydroobjects.html

HydroObjects is a .NET DLL with COM classes that support hydrology applications. The key
class in the library is WebServiceWrapper, which provides a method for calling Web Services
from a COM (e.qg., Visual Basic for Applications (VBA)) environment. This class can be used to
call WaterOneFlow web services for downloading hydrologic time series.

HydroExcel - WaterOneFlow in Excel

http://his.cuahsi.org/hydroexcel.htmi

HydroExcel is a Microsoft Excel spreadsheet that uses macros and HydroObjects to download
hydrologic observations data from WaterOneFlow web services. This means that you can query
for observation sites, variables, and time series data from online resources directly within Excel.
As long as a web service follows WaterOneFlow specifications, HydroExcel will be able to
communicate with it. Thus, HydroExcel provides a window into the nation’s water data from
within one of the most widely used applications within the hydrologic science community.
HydroExcel consists of nine worksheets, eight of which provide access to WaterOneFlow web
services. Each worksheet accesses a specific kind of data. For example, the figure below shows
a screenshot of the Time Series worksheet, which is used for downloading a time series of values
for a given variable at a given location.

GetValues [w]Ignore NoData Value
Site Code/Location|N\WI5:08155000
Variable Code|MNWIS:00060
Start Date|5/1/2008 0:00
End Date|6/30/2008 0:00
Get Walues
DateTime Value
£/1/2008 0:00 786
5/2/2008 0:00 820
5/3/2008 0:00 1170
5/4/2008 0:00 797
5/5/2008 0:00 975
5/6/2008 0:00 952
5/7/2008 0:00 969
5/8/2008 0:00 1100

To use HydroExcel, you indicate the web service that you want to work with, and then click
buttons in the spreadsheet to download information from the web service. Links to some

http://his.cuahsi.org/hydroobjects.html
http://his.cuahsi.org/hydroexcel.html

existing WaterOneFlow web services are provided in the spreadsheet to get you started, as well
as informative text. A screenshot of the Data Source worksheet is shown below.

X . 7
Data Source Spucily the web service that will be used |
In the bex et ta WSDL Location, inpet (hint- eopy and WSOL Locotion]niip inis02 usu Settibaartaeicushsi 10 asm:7WSOL |

pasie) the W3DL location for the WaterOneFlow web
ARFACE YO wWanl IO BLOREE

Gt Capabilies | Open Sanice Wab Pz GolStes | GetVanshs |

This web: service will be used Inall other workshests.

weh services arw Learning Worksheet
Informative et Shortcuts
5 regietensd with the Service

- Web Services for National Data Sources
Chck Get Capabilities o see what hsctionalty is Daia Source WEDL Lecation Descripthan

wimlaie with the el service Unifted States Goological Suhip-firivir sdsc sdulwaberonsSow WIS/ DailyVahis asmTWSDL WS daity va
- . | ehe methods that this | Hnited States Geologecal Sahitp iever sdsc eduwateronedow WIS Groundwates ssmxPWS0L NS ground]|
f;g:;mi:jm ?ﬂ!ﬁpﬁ :.::..».5,;13?:;;:;1 |:u Linited S2ates Geologesal Ss hitp e sduc eduiwaberonedow NS UnilValues asmo MWS0L HWAE raal tin]
prowides 200ess o a gidded dalasel Since the dataare | United States Geologcal Sahitp (iever sdsc ndumnndm‘l'ﬂ'ﬂS-‘D.ltl asma T S0L NS nstant
Jbased oo & grid, and not on dacrele seesor ocalicas of | Oak Ridge Natonal Laborst Mip iever sdue eduwateroneSow DAy 8 i TVEDL Dianyrrsat Mistey
"sdes”, he sennce will 5ol suppad & GatSdes of Mabional Canters for Emaron hitp e sdpc sdulwabsronsdowBLAM 1 2403 & mgero SO0 Horth Amang
GeiSitainfo mathod, and so you will not b+ able iouse the | Emdmnmental Protection Ag httpfirver sdsc edu/wateroneSowEP Aicuahsi_ Ty STORET wat
Ses, Site Info, or Ste Catalog worksheats with that MASA hitp i et sduiwatesonetow MODIS! SQMH al I —

SErnce

Click Open Serdice Web Page to open aweb page that | Wb Services for Academic Investigator Data
may have mom information about the wab senvice University WSDL Location
Litsds S1ate Unrargady hitp g2 udu e ttisbsanmaecuahsi_1_0 aamx

Click Gat Sites 1o jump fothe Sites workshes! and Litah Siate Unrarsaty hittp-fhis02. usw sdemudlaksicuahsi_1_0 asm"WED
downicad 8 kst of sites from the wed sanace Unresrsity of lowa hittp (his08 il wiowa. edu'nearad cuahsi_1_0 asmax W
Unrestady of lowa it Tus 08 uhe e eduteater l:'.l-i“:.' Guﬂh?' 1_0.asma VW EDL Mk Armcd) o

Click Gat Viahabilea Lo pare 12 the Wanables workahset linscac®:; of L bbb, (o8 i ssirean oo beotirgiokes 1 1Y srensRERETY blirk Breosid

The worksheets and their functions are:
e Introduction — Introduce the worksheet and provide license information.

e Data Source — Set the web service that will be accessed in the spreadsheet.
e Sites — Download a list of sites available from the web service.
e Variables — Download a list of variables available from the web service.

e Site Info — Download information about a specific site, including a list of variables
measured at the site.

e Site Catalog — Download site info for several sites at once.

e Site Summary — Use a pivot table to summarize the site catalog, typically by the number
of values of a given variable measured at each site.

e Time Series — Download a time series of values for a given variable at a given location
for a given time period.

e Statistics and Charts — Use a pivot table and chart to summarize time series data.

10

When downloading site information, HydroExcel can build a KML file to show the sites in
Google Earth. This provides a spatial component that complements the tabular nature of the
Excel spreadsheet. A screenshot of observations sites for the Little Bear River network is shown

in the figure below.

= Google Earth

File Edit “iew Tools Add Help

=10lx]|

= O My Places
c @ OB siohtseeing
Select this folder and click on | 8
i the 'Play' button below, to start
= M&S femporary Places
& M & LitleBearRiver Sites
KML representation of sites
returned from the folloswing

D LittleBearRiver network

41:36,24'997 N

US USBBR2E xpFarm
— L USU-U'BR-WEllsville
\\ (T 53 :*“
& ~ o JLels 4y’ O W
=

P ’ d
iy yfo -.,\ g

' Topr

WUs U:UBR Raradiser J§10105900

USU:-LBR:-ParadiseRgpeat

: "A.,‘ustfL”‘BR.-EFR epeater 4
; \ D :

US U-L BR-EF Ve atha

2008!DigitalGlobel
SU-UBR-SEUpper :
o ©2008 Tele’Atlas - Gooal

- & 2 L | .
S

1115222 31" W elevi1492'm Aug 2006 Eye alt 37.28k

In summary, HydroExcel provides access to WaterOneFlow web services from the Excel
application environment using HydroObjects and VBA macros. To download HydroExcel

installation files and the software manual (with tutorial), visit
http://his.cuahsi.org/hydroexcel.html.

11

http://his.cuahsi.org/hydroexcel.html

4.0 Ingesting Weather and Streamflow Data into ArcGIS with
HydroGET

http://his.cuahsi.org/hydroget.html

CUAHSI’s HydroGET (Hydrologic GIS Extraction Tool) is a versatile tool that gives ArcGIS
users the ability to ingest web service data into ArcGIS. HydroGET stores the downloaded data
using the time series format used in the well-known data model, Arc Hydro, and its upcoming
successor, Arc Hydro Il. HydroGET can work with any web service as long as the web service
complies with CUAHSI’s WaterML protocol.

The figure below shows the program interface of HydroGET. It contains five tabs for the user to
specify what kind of environmental data he wants to download. These tabs are listed as follows:

e Atmospheric

e Surface
e Subsurface
e Custom (single point); and,
e Custom (multiple points).
User inputs Main Interface Types of data and sources
:ljll': et Please selectthe poin eahreclass: Please select dentfefekd in feahureclass Atmospheric
contains = [HyceolD =] data from Daymet
Pmmf‘q:’t type in the path and lename of the geodatabase that contans the TieSeres table and Unidata
Interest. |CAEmest\WE WeatherDowrdoader\anabyris\GIS\projects\ion_HIS_workbook\4R Browse U
Aimospheic | Suface | Subsuface | Custom (Single Pon)| Custom il Ponk) | | ——)
Target T Surface Data Elh
gcodﬂiﬂhasc Source: Dapmet - Data avadable from 1/1/1380 to 12/31/2003. from :
for ™ 1 - Daly masimum temperature (deg C) [T 5-Vapor Pressue Defick [Pa) ::
downloaded = 2 = e USGSNWIS =
data [3-Average lnpsicies ding day(deaC) || 7-Daplenthte) (<)
. I™ 4-Preciptation cm) Subsurface %
15t of Start date: End date:
vansblesof || T BEES T s data from
imnterest ~FoocattedVokee —————————————————————— 00000000000 o I e
(cach tab Source: UNIDATA North Arerican Model 12€M - &t Fhou intervals fothe next 35 fEek
holds a ™ 8-Total P‘fecdd.iun[kg.mZol rrrnn.si-lal] .
different set | Nole that forecasts are in zubs time (Gresnwich Mean Time].
of vanables)
Data fromuser-
Period of specified sources g
interest for single point E&
5
Data from user- 2
 Replace contents of TimeSeies table . =
- = specified sources | Q,
Append to contents of eiies o ™)
for multipoints

12

http://his.cuahsi.org/hydroget.html

The Atmospheric, Surface, Subsurface tabs offer the user the ability to download data from
preset web services to describe the different component of the hydrologic cycle. These web
services access Daymet and Unidata for atmospheric data and USGS NWIS for surface water
and groundwater data. Together they enable the user to characterize the hydrologic
characteristics of his geographical area of interest.

When the user utilizes only these three tabs to download data, HydroGET is operating in Default
Mode. This means that HydroGET only calls the web-services and variables that have already
been hard-wired into its code. When HydroGET is operating in Default Mode, it is very user-
friendly and does not require the user to have any background knowledge of web services.
However, its capabilities in this mode are limited as it cannot handle data sources other than
Daymet, Unidata and NWIS.

The Custom (single point) and Custom (multiple points) tabs allow the user to retrieve data
from any user-defined web services that comply with WaterML format. When the user utilizes
these two tabs to download data, HydroGET is operating in Custom Mode. Custom Mode
requires the user to have slightly more knowledge about web services and is recommended for
the intermediate user. In this mode HydroGET becomes truly a powerful tool. Not only does it
have the ability to access a wide range of web services, it also has the ability to batch process
multiple requests to different web services. In this mode it essentially becomes a harvester for
data.

For the HydroGET installation files and tutorial, see http://his.cuahsi.org/hydroget.html.

13

http://his.cuahsi.org/hydroget.html

5.0 Plotting MODIS Data with Matlab
by David Tarboton

5.1 Introduction

Matlab users can take advantage of web service methods by using the createClassFromwWsdl
function. This function creates a Matlab class based on a WSDL. The URL to the WSDL is
provided to the function when the function is called. This chapter demonstrates how to call a
CUASHI web service from Matlab, parse the result, and plot a time series graph. In the exercise,
you will write an M-file that creates a plot of the Cloud Optical Thickness Water Phase variable
from NASA’s MODIS database of remote sensing data.

5.2 Computer and Skill Requirements

To complete this exercise, your computer must meet the following requirements:
e Working Internet connection
e Matlab version 7 (or greater) software

This exercise assumes that you have some familiarity with the following software environments:
e Matlab version 7

NOTE: The source code for the parse_xml M-file used in this exercise is located in Appendix A.
The source code for the MODISPlot_xml M-file is located in Appendix B.

5.3 Procedure

WaterOneFlow web services return data either in XML or Object form. XML is a very useful
format for web services, because it is platform independent and self-describing. Yet while
Matlab can create a class from a WSDL, it does not contain inherent classes for working with
XML. Therefore, we’ll begin the exercise by creating an M-file called parse_xml that will serve
as our Matlab XML parser.

5.3.1 Setting up the XML Parser

1. Start Matlab.
2. Set the current directory to the location where you wish to perform the work.

Current Directary: IC:'ctempMatlabFinal ll J

3. If you already have a copy of the parse_xml.m file, copy the file to the working directory
and go to the section entitled Retrieving MODIS Data. Otherwise, continue to the next
step.

4. Inthe Command Window, enter the command

14

edit parse xml

If you get the following prompt, click Yes to create the file parse_xml.

File parse_xml.m does not exist.
Do you want to create it in the current directory?

[] Do not show this prompt again,

5. In the Matlab editor, enter the code for parse_xml as found in Appendix A. If you are
viewing an electronic copy of this document, try copying and pasting the code.
6. Inthe Matlab editor, click the File menu, and then click Save.

You should now see the parse_xml.m file in Matlab’s Current Directory window.

Current Directory - C:htemphMatlabFinal
AW B

Al Files £ | File Type

@ parse_xml.m h-file

5.3.2 Retrieving MODIS Data
With the XML parser in place, the next step is to build an M-file for retrieving MODIS data.
NOTE: Instead of entering code as shown below, you could copy the code from Appendix B, or

simply refer to MODISPlot_xml.m if you were provided a copy of the finished file with this
document.

1. Inthe Command Window, enter the command

edit MODISPlot xml

2. In the Matlab editor, enter the following lines of code. This code creates an instance of
the MODIS class from the WSDL.

[

% Create class.
wsdl="http://water.sdsc.edu/waterOneFlow/MODIS/Service.asmx?WSDL';
createClassFromWsdl (wsdl) ;

o)

$ This creates an instance of the class.
svsMODIS = MODIS;

15

3. In the Matlab editor, enter the following lines of code. This code sets the parameters for
calling the GetValues method, and then calls GetValues. In this case, the parameters
instruct the MODIS class to retrieve Cloud Optical Thickness Water Phase values for
2004, spatially averaged over an area that roughly covers Travis County in Texas. The
plotArea parameter indicates that the values should include areas both over the land
surface and the oceans. You will find a list of valid codes and keywords for retrieving
MODIS data at:

http://water.sdsc.edu/waterOneFlow/MODIS/Service.asmx

o)

5 Specify input parameters.

w="'-98.2" % West longitude.

s='30" % South latitude.

e='-97.3"'" % East longitude.

n='30.7"'" % North latitude.

location=['GEOM:BOX (',w,"' ',s,',",e," ",n,")"]

% Variable Code 11 = Cloud Optical Thickness Water Phase.
variableCode='MODIS:11/plotarea=land’
startDate='2004-01-01"

endDate='2004-12-01"

% Call the GetValues function to get the time series data.
xmlValues=GetValues (svsMODIS, location,variableCode,
startDate,endDate, '")

4. |In the Matlab editor, click the File menu, and then click Save.
5. In the Matlab Command Window, enter the command

MODISPlot xml

This command runs the code in the MODISPIlot_xml.m file. When the code runs, you will see
the values that have been set for the parameters to the GetValues call, followed by the XML
String returned from the web service that is saved in the variable called xmlValues.

endlate =

2004-12-01

*xmlValues =

ktimeﬂeriesRespDnse xmlns:gml="http://vvw.opengis.net/gml"

Alternatively you can run each of the commands above individually in sequence by highlighting
them and pressing F9 in the Matlab editing environment.

16

http://water.sdsc.edu/waterOneFlow/MODIS/Service.asmx

To get an understanding of the structure of the XML output we will copy it to a file and view it
using an XML viewer such as Internet Explorer.

6. Copy the XML output (beginning with <timeSeriesResponse and ending with
</timeSeriesResponse>) and paste the text into a new text document using a text
editor.

7. Save the document as MODISExample.xml, and close the text editor.

8. Open MODISExample.xml with an XML viewer.

Below is a screenshot of the document, as viewed in Internet Explorer. Some of the XML
elements have been collapsed for readability.

<timeSeriesResponse xmins:gml="http:/ /www.opengis.net/gml" xmins:xlink="http:/ /ww
xmins:xsi="http:/ /www.w3.org/ 2001/ XMLSchema-instance" xmlns:wtr="http:/ /fww
- «<timeSeries nama="MODIS" =
+ <sourcelnfo xsi:type="DataSetInfoType">
- =variable =
<variableCode vocabulary="MODIS">11 </variableCode =
<variableMame >Cloud Optical Thickness Water Phase (QA WT) </variableName:=
<units unitsAbbreviation="um" unitsCode="55" unitsType="Length">=micron</units
<fvariable=
- «<wvalues unitsabbreviation="um" unitsCode="55%" count="12"=
<value dateTime="2004-01-01T00:00:00">18.9011 </value=
=value dateTime="2004-02-01T00:00:00">31.9133 </value=
<value dateTime="2004-03-01T00:00:00">21.5478</value:=
<value dateTime="2004-04-01T00:00:00">18.8422 </value:=
<value dateTime="2004-05-01T00:00:00">14.2878 </value:=
<value dateTime="2004-06-01T00:00:00">9.4344 =/ value:=
<value dateTime="2004-07-01T00:00:00"=>5.3655 </ value=
<value dateTime="2004-08-01T00:00:00"=>7.3822 =/value=
<value dateTime="2004-09-01T00:00:00">7.9600 </ value:=
<value dateTime="2004-10-01T00:00:00">10.7789 =/value:=
<value dateTime="2004-11-01T00:00:00">25.8700=/value=
<value dateTime="2004-12-01T00:00:00">19.5344=/value=
</values=
</timeSeries =
</timeSeriesResponse =

Notice the hierarchy of data in the XML. Understanding the hierarchy is crucial to navigating
the XML in Matlab. The parse_xml utility converts an XML string into a Matlab structure, the
contents of which can be accessed through parent/child relationships. For example, in
MODISExample.xml, the name of the time series variable is stored in the variableName tag.
This tag is a child of the variable tag, which is a child of the timeseries tag, which is a child
of the timeseriesResponse tag, which is a child of the XML document itself. In other words,
the variableName tag is four levels down. The order of child tags in the same “generation” is
also important. The variable tag is the second child of the timeseries tag. Therefore, the
complete path to the variableName tag can be summarized as follows:

17

a) Get the first child (there is always only one) of the XML document. (This returns
timeSeriesResponse)

b) Get the second child of this element. (This returns timeSeries)

c) Get the second child of this element. (This returns variable)

d) Get the second child of this element. (This returns variableName)

This logic will be used to retrieve information from the Matlab structure created from this XML
string.

9. Close the XML file.

10. In the Matlab editor for MODISPIlot_xml, enter the following lines of code. This code
calls the parse_xml function which feeds the XML string to the parser, and returns a
Matlab structure object created from the XML string.

% Parse the XML string.
structValues=parse xml (xmlValues) ;

Execute just this code by highlighting it and pressing F9. Examine the structure structValues
that is returned, to see that it contains the complete content of the XML string in a series of
nested structures. For example, if you type:

structValues

in the Matlab command window, you will see the following.

rr 3tructValues

structValues =

child: [1x1l struct]

This indicates that the structure returned contains one child that is itself a structure named child.
To drill down further into this structure, the logic of the XML needs to be followed. For
example

structValues.child.child(2) .child(2) .child(2)

returns the following

> structValues.child.childi(2) .childi2).child(2)

ans =

tay: 'VARTAELEMALME'
attrib=s: [1lxl struct]
walue: 'Cloud Optical Thickhness Water Phase (QL WTY!
child: []

18

This displays the var1ABLENAME tag Which is the second child of the element variable, which
is the second child of the element timeseries which is the second child of the element
timeSeriesResponse Which is the only child element in the structure.

11. In the Matlab editor for MODISPIlot_xml, enter then execute following lines of code.
The display functions write the name and units for the variable to the Matlab Command

Window.

% Report the name and units of the chosen variable.
display(structValues.child.child(2) .child(2).child(2) .value)
display(structValues.child.child(2) .child(2) .child(3) .value)

12. In the Matlab editor for MODISPIlot_xml, enter the following lines of code. This code
retrieves the time series records from the structure then loops through all the records and
stores the datetimes and values in an array. The datenum function converts the datetimes
to numeric format, which aids in plotting the data.

% Get the <value> tags.
Recs=structValues.child.child(2) .child (3) .child;
[dl,d2]=size (Recs)

% Build arrays of datetimes and wvalues.

for i=1:d2
% Reformat date to that Matlab can understand it.
datetime=Recs (i) .attribs (1) .value;
year=datetime (1:4);
month=datetime (6:7) ;
day=datetime (9:10) ;
datetime=[month,'/"',day,'/"',year];
dn (i)=datenum (datetime); % Convert to numeric date.
% Read the time series value.
values (1) =str2double (Recs (1) .value) ;

end

13. In the Matlab editor for MODISPIlot_xml, enter the following lines of code. This code
sets up the axis for plotting, and then plots the data using the Matlab plot function.

% Plot the graph.
plot (dn,values) ;datetick;
grid on % Turn on grid lines for this plot.

14. In the Matlab editor, click the File menu, and then click Save.
15. In the Matlab Command Window, enter the command

MODISPlot xml

After a moment, you’ll see the variable information appear in the Command Window, and then a
graph will appear.

19

File Edit Wwew Insert Tools Deskiop Window Help u
DEESE| L Ra™s ¥ 08O

35 T T T
£1) SN E— A S i
17 I SR W oo R R LR .

1) A A N S W .

2104 204 =53-04 =14-04 21-05

You can edit the plot, put legend and axes names by going to the Edit menu in Figure 1 plot
shown above.

In this exercise, you have learned how to call web services from within Matlab and plot MODIS
data. This concludes the exercise.

20

6.0 Ingesting NWIS Data using VB.Net
by Tim Whiteaker

6.1 Introduction

Using web services is a breeze with Visual Studio. This chapter demonstrates how to call a web
service with Visual Studio 2008 and the Visual Basic .Net programming language.

In this exercise, you will create a VB.Net Windows application that uses the NWIS Unit Values
web service to compute average streamflow over the past few days at the Colorado River at
Austin, TX. The NWIS Unit Values web service returns real-time data for roughly the past 31
days. These data typically are recorded at 15-minute intervals.

6.2 Computer and Skill Requirements

To complete this exercise, your computer must meet the following requirements:
e Working Internet connection
e Visual Studio 2008 software

This exercise assumes that you have some familiarity with the following software environments:
e Visual Studio 2008

6.3 Accessing NWIS Data with a VB.Net Windows Application

In this exercise, you will create a windows application with one main window that allows the
user to click to see what the average streamflow over the past few days is at the Colorado River
at Austin, TX. The application lets the user specify the number of days for which data should be
retrieved (up to 10 days back). The application then asks the NWIS Unit VValues web service for
streamflow values, and then computes the average of the returned values.

6.3.1 Setting up the Project

1. Start Visual Studio 2008 (Click on Start --- All Programs --- Microsoft Visual Studio
2008 --- Microsoft Visual Studio 2008).
2. Click the File | New | Project

Edit View Test Tools Window Help
New *|liz] Project... Ctrl+
Open P | @ | website... Shift-+Alt+HN
Close 1 | File...

3. Inthe New Project window, set the following properties:
a. Choose Visual Basic --- Windows from Project Types.
b. Select Windows Forms Application from Templates.
c. Type “AustinStreamflow” as the Name.
d. Set the location where you want to save the project, e.g., C:\Temp.

21

e. Click OK.

New Project

Project types: Templates: JMET Framework 3.5 b | |§|
(= Visual Basic # || Visual Studio installed templates 5
Windows 3 L3
weh _-EEWindows Forms Application
Smart Device @Class Library
Office ¥|| [wPF Application b
A project for creating an application with a Windows user interface (.MET Framework 3.5) |
Mame: | Austinstreamfiow |
Location: | C:'\Temp w | [Browse...]
Solution Name: AustinStreamflow Create directory for solution
[OK l [Cancel]

A new project will open with a default form called Form1.

6.3.2 Creating the Web Reference

This project will make use of the NWIS Unit Values web service to retrieve streamflow values
from the USGS stream gage on the Colorado River at Austin. The web service becomes
available to the project after making a web reference to the service.

1. Click the Project menu, then click Add Service Reference...

8 AustinStreamflow - Microsoft Visual Studio

File Edit WView |Project | Buld Debug Data Test -

A" @ # E Addwindows Form...

Add User Control...

Add Component...
Add Module...
Add Class...

Add ArcGIS License Checking. ..

K000 | «?{. o)y 3 Jaa

(25
2] | Add Mew Item... Ctrl+Shift+aA
|| Add Existing Item... Ctrl+D
[| Mew Folder
29 | Show All Files
Add Reference...
<3| Add ArcGIS Reference...
g | ArcGIS Toolbox Reference. ..

Add Service Reference...

2. Inthe Add Service Reference window (below Address:), type in the following URL.:

http://river.sdsc.edu/wateroneflow/NWIS/UnitValues.asmx

Address:

|http:;","ri\rer.sdsc.edu;"'n'ateroneﬂo'J\';"N\“JIS;'LInit'u'alues.asmx v“ Go]

22

3. Click Go. Visual Studio will navigate to the URL and verify that a web service is

present.
4. Change the namespace from the default to NwisRealtime. This is the name by which you

will reference the NWIS web service in your code.

Add Service Reference

To zee a list of available services on a spedific server, enter a service URL and dick Go. To browse for
available services, dick Discover.

Address:
|hth::;"friver.sdsc.edufu\'ateroneﬂou\';N\"‘J’ISJ'LInit‘u'alues.asmx v“ Go] [Qiscguer <
Services: Operations:

®) waterOneFlow

1 service(s) found at address 'http: //friver.sdsc.edufwateroneflowMWIS UnitValues. asmx’.

Mamespace:
wisRealtime |

o (o]

5. Click OK.

The NWIS web service is now available for use within your project.

6.3.3 Building the User Interface

Now that you’ve set up the project, you’ll build the user interface by adding controls to the form.
Later, you’ll add the code behind those controls which will perform the work.

1. Right click on Form1 and click Properties.

[Z] Wiew Cade
& Lock Controls
I

|§ Properties

23

2. Change the Text property of the form to “Colorado River Streamflow”. This changes the
name that appears in the title bar of the form.

Form1 System.Windows.Forms.Form -

sl[a)

ShowInTaskbar True ~
Size 300, 300

Sizeiaripstyle Auka

StartPosition “WindowsDef aultLocation

Tag

Colorado River Streamflow
Tophost False -’

Text

The text associated with the contral,

3. Add two labels, one combo box, and one button to the form, at roughly the same
positions as shown in the figure below.

Colorado River Streamflow g@g|

Labell

Label2 v

Button1

U

4. In a manner similar to setting the Text property of the form, set the properties of the
controls as shown below.

Control Property Value

Labell Text This program computes the average streamflow in the
Colorado River at Austin, TX, over the past few days. Specify
the number of days to include in the computation with the drop
down box below.

AutoSize False
Label2 Text Number of recent days to include in average:
ComboBox1 | DropDownStyle | DropDownL.ist
Buttonl (Name) btnCalculate

Text Calculate Average Streamflow

5. Resize and reposition controls to make for a neat arrangement, if necessary.

The form should now look similar to the one below.

24

This program computes the average streamflow in the
Colorado River at Austin, TX, averthe past few days.
Specify the number of days to include in the
computation with the drop down box below.

Mumber of recent days to include in average:

Calculate Average Streamflow l

Now you will add the choice of 1 to 10 days to the combo box.

ComboBox1 System.Windows, Forms, ComboBios

A EIEAE

GenerateMember True
ImeMode MoControl
IntegralHeight True
ItemHeight 13
(Collection)
Edit Items
Items

The items in the combo box,

6. Click the properties for ComboBox1, and then select the Items property. Click the
ellipsis next to (Collection).

7. Add the numbers 1 through 10 to the String Collection Editor window. This allows the
user to select between 1 and 10 days to include in the computation of average streamflow.

String Collection Editor

Enter the strings in the collection {one per line):

[ErY. N RO I, O IV

=

[OK][Cancel]

Click OK to close the String Collection Editor window.

25

The design of the form is now complete. Next you will add code to make the form perform
useful work.

6.3.4 Writing the Code

First you must set the default value of the drop down box. Let’s use 10 as the default.

1. Double click the form (be sure and not to click on any of the controls that you have added

to the form.) This opens the code editor, and creates stub code that will be run when the
form opens.

-] Fublic Class Formil

Private Jub Formwl Load(ByVal sender A4s System.CObject,

End Sub
End Cla==

2. Add the following code to the Form1_Load procedure.

ComboBox1l.SelectedItem = ComboBoxl.Items.Item(9)

The result is shown in the screenshot below.

Private Sub Forml Load(ByVal =sender A= System.Object,
ComboBox]l .Selectedltem = ComboBoxl.Item=s.Item(9)
End Sub

In the code above, you are setting the selected item in the combo box to be the 10" item (which
happens to be the number 10). Indices in VB.Net begin with zero, not one. So the first item in
the combo box has an index of zero, while the last item has an index of 9 in this case.

3. At the top of the code editor, click the Form1.vb [Design] tab.

q Data Tools ‘Window Community Help

2 - =

b [Forml.vb [Design]

H Public Class Forml

Start Page “Formil.

i (Forml Events)

- Frivate Zubh Forml Load(BEyWal se
CormboBoxl.3electedItem = Comb
End Sub
End Class

26

This shows the form and the controls that you have placed on it. This is a convenient view for
choosing a specific control to write code for. Now you’ll add code to the button to compute
average streamflow.

4. Double click the Calculate Average Streamflow button to open the code editor and
automatically create stub code for the Click event for that button.
5. Add the following code to the btnCalculate_Click procedure.

' Set initial parameters.

' Set the siteCode for our gage of interest.

Dim location As String = "NWISUV:08158000"
' Set the variableCode for streamflow.
Dim variable As String = "NWISUV:00060"

' Set start and end date.

Dim startDate, endDate As String

Dim tmpDate As Date

endDate = Format (Now, "yyyy-MM-dd")

tmpDate = Now.AddDays (-1 * ComboBoxl.SelectedItem + 1)
startDate = Format (tmpDate, "yyyy-MM-dd")

' Call the web service.

Dim ws As New NwisRealtime.WaterOneFlowSoapClient

Dim tsResponse As NwisRealtime.TimeSeriesResponseType

tsResponse = ws.GetValuesObject (location, variable,
startDate, endDate, "")

' Process the results.
rfrTYr9rryryyyryryrrrvyryrvyrvyrvyrvrrrrrrrrrrrrrryryryrrrrurury

Dim vals As NwisRealtime.TsValuesSingleVariableType
vals = tsResponse.timeSeries.values
If vals.count = 0 Then
MsgBox ("No values returned")
Exit Sub
End If

Dim avg As Double = 0

For 1 As Integer = 0 To vals.count - 1
avg += vals.value (i) .Value
Next

avg = avg / vals.count
MsgBox ("The average streamflow is " &
FormatNumber (avg, 1) & " cfs")

27

In the code above, you are first preparing the inputs to feed the web service. The tricky part of
this is formatting the dates to “yyyy-MM-dd” format (e.g., 2006-12-31), which is what the web
service is expecting. Another trick is calculating the start date by adding “negative” days to the
current date in the line:

tmpDate = Now.AddDays (-1 * ComboBoxl.SelectedItem + 1)

Next you are creating a new instance of the NWIS Unit Values web service, and calling the
GetValuesObject method from the service with the date inputs from the user. This method
returns an Object with the data retrieved from the web service.

Next, with the results from the GetValuesObject call, you are computing the average streamflow
from the values returned, and then showing a message box to report the result.

6.3.5 Running the Code
The project is now ready to run.

1. Press F5 on your keyboard to run it.
2. Click the Calculate Average Streamflow button.

After a minute or two, a message box appears showing the average streamflow over the past 10

days. Note that your value may be different than the value in the screenshot below, since this
exercise was created on another day than the current day.

AustinStreamflow E]

The average streamflow is 192,2 cfs

3. Close the form when you are finished.
You have the exercise and have learned how to call a web service from Visual Studio 2008.

From this point, you could build the solution as an executable file by pressing Ctrl-Shift-B on
your keyboard. See your Visual Studio help for more information about building solutions.

28

7.0 Ingesting NWIS Data Using Java
by David Valentine

In this chapter you will build a Java class that accesses the NWIS Daily Values web service to
obtain daily streamflow values for Big Rock Creek near Valyermo, California, for the year 2001.
The class will output the site code and site name for this location, as read from the web service,
as well as the time series of streamflow values.

7.1 Computer and Skill Requirements

To complete this exercise, your computer must meet the following requirements:
e Working Internet connection
e Java SE 5: download from http://java.sun.com/
e NetBeans IDE 5.5: download from http://www.netbeans.org

This exercise assumes that you have some familiarity with general programming concepts and
Java.

NOTE: The source code for the nwis.java class created in this exercise is located in Appendix C.
7.2 Procedure

7.2.1 Creating a New Project
First, you will create a new Java project.

1. Start NetBeans IDE.
2. Click the File menu, and then click New Project...

) NetBeans IDE 5.5

wl=0 Edit Wiew MNavigate Source Refa

I Mews Project... Ctrl+-Shift+N

3. Inthe New Project dialog, select General in the Categories pane. In the Projects pane,
select Java Class Library.

29

http://java.sun.com/
http://www.netbeans.org/

Steps Choose Project

1. Choose Project Categaries: Projects:

2.) General 4| | & Java Application
, i web = lava Class Library
_____ I3) Enterprise " @ Java Project with Exisking Sources
;(| 5 i Java Praject with Existing &nk Scripk
Descripkion:

Creates a new 125E library in a standard IDE project. & JZ5E library o
does not contain a main class, Standard projects use an IDE-generated
i i ild. run. and dehun soor oroieck v

Mext = Cancel Help
||

4. Click Next.

5. In the New Java Class Library dialog, enter “NwisOneFlow” as the Project Name.

6. Enter the path in which you want the project folder to be created in Project Location. The
IDE will create a subfolder at that location called “NwisOneFlow”, which will contain all
files used in the project.

E| New Java Class Library

Steps Mame and Location

1. cChoose Praject Project Mame: | MwisOneFlow |

2. Mame and Location
Project Location: | Ckemp | [Browse, .,
Project Falder: | C:\temp|MwisOneFlow |

Eirish l [Cancel] [Help
7. Click Finish,

7.2.2 Creating a Web Service Client
With the project set up, you will now create a client for the NWIS web service.

1. In the Projects window, right click on NwisOneFlow, point to New, and then click Web
Service Client...

30

| NetBeans IDE 5.5 - NwisOneFlow
File Edit Wiew MNavigate Source Refactor Build Run %S Tools Window Help

EEEN Y B INEL B PP D

‘ Projects i = IEFiIES : Runtime W
EI@ M New ¥ |* FilefFolder...

g Soury Build Project: Java Class...
Test F

: Clean and Build Project

w02 Librar | . [Java Package. ..
-3 TestL (lean Project Java Interface...

Generate Javadoc For Project I:' 1Panel Form

Run Prajeck ™ IFrame Form...

Debug Project]
) Eb Ertity Class...
Test Project alk+Fa
Eb Ertity Classes From Database. ..
Set Main Project

_‘_l
-

Web Service Client, .,

Finen Bennired Broiscks

2. Inthe New Web Service Client dialog, enter
“http://water.sdsc.edu/wateroneflow/NWIS/DailyValues.asmx?WSDL” as the WSDL
URL.

For the Package, enter “org.cuashi.wof.ws.nwis”

4. For the JAX Version, select JAX-WS.

w

E| Mew Web Service Client
Steps W5DL and Client Location
1. Choose File Type Specify the WsDL file of the Web Service.
2. WSDL and Client Location
O Project: | | Browse. ..
i Local File; | | Browse, ..

(#) WSDL URL: ||I:eru:uneFIuw,l'NWIS,I'DaiI':.f'-.I'alues.asmx?WSDL| [Set Proxy...]

Specify a location For the client.

Project: | MimisCneFlow |
Package: brg.cuashi.wuf.ws.nwis w |
18 Yersion: |JF'-><'W5 v |

Mext = [Finish H Cancel][Help

5. Click Finish to compile the web service client class.

31

7.2.3 Creating a Class to Consume the Web Service

In this section you will create a new java class, wof.nwis, that accesses the web service client
you just created. The class will download a time series of daily streamflow values at Big Rock
Creek near Valyermo, California, for the year 2001. The site code for this location is 10263500,
and the variable code for streamflow is 00060. You will hard code both of these values into the
class. You will also hard code the time span (the year 2001). In a more robust application, you
would let the user supply these parameters. The class will output the name of the site, its site
code, and the time series of values.

1. In the Projects window, right click on the NwisOneFlow project, point to New, and then
click Java Class...

‘ Projects [= |EFiIE5 : Runtime Welcome
- & |
@ 1 Build Project i Web Service Client, ..
w-[@ | Clean and Buid Project B Java Class...

2. Inthe New Java Class dialog, enter “nwis” as the Class Name, and “wof” as the Package.

Steps Mame and Location

1. Choose File Type Class Mame: | nwis [
2. Mame and Location

Project: | MisCneFlow |
Location: |5|:|ur|:e Packages w |
Package: }NDF W |

Created File: |C:'I,I:emp'l,NwisOneFIuw'l,src'l,wu:uF'l,nwis.java |

Einish H Cancel

3. Click Finish.
Now you will add a “main” procedure, which is the default procedure that will run when the
class is invoked. It is within this procedure that you will eventually add the code to retrieve the
time series values.

4. At the end of the source code for the nwis class, enter the following code.

32

public static void main(String[] args) {
}

The screenshot below shows the result.

package wof;

J,l".\".\'

*

* [author whiteaker
i

public class nwis |

= A% Creates a hew instance of nwis */
T public mwris() |
}
T public static void main(5tring[] args){

Now you will create the code for calling the web service. Fortunately, the IDE can create most
of the code for you.

5. Right click within the code for the main method, point to Web Service Client Resources,
and then click Call Web Service Operation.

T public static wvoid main(5tring[] args){

} Go Ta]

Select in]

} Wb Service Client Resources Call Web Service CDperation

6. In the Select Operations to Invoke dialog, select GetValuesObject, and click OK.

El Select Operation to Invoke

fvailable Web Services;

= MwisOneFlow
El@ Dailyalues, asm
=@ NWISDailyvalues
EE WhakerCneFlow
: > ------ @ GetValues
, = ety aluesChijeck

@ GetSteskml

33

After you click OK, the IDE generates code for calling the GetValuesObject method from the
NWIS web service. The IDE creates variables (e.g., location) for storing the parameters that will
be sent to the web service, but leaves them empty for you to fill in later. A screenshot from the
code editor is shown below.

public static woid maini(3tring[] args){
try { // Call Web Service Operation
org.cuashi.wof.ws.nwis. . NUISDailvValues service =
new org.cuashi.wof.ws.nwis . HWISDailyValues();
org.cuashi.wof.ws.nwis.WaterOneFlow port =
service.getWaterOneFlovw() ;
A4 TODD initialize W3 operation arguments here

jawva. lang. 3tring location = ";
java. lang. String variahle = 77;
java.lang. String startDate = "
java. lang. tring endbate = "7;
jawa. lang. String authToken = *7;

A4 TODO process result here
org.cuashi.wof.ws.nwis. TineferiesResponseType result =
port.get¥aluesObject (location, wariable, starthate, endDate, authToken]):
System. out.println("Result = "+result):
} catch [(Exception ex) !
S4 TODO handle custon exceptions here

}

When executed, the above code creates a web service, gets an instance, and then calls
GetValuesObject. Now you will hard code the parameters for our site of interest. Remember,
you are hard coding these parameters for this simple example application, but a more robust
application would read these parameters as inputs from the user.

7. Fill in the parameters for calling the web method.

java.lang.String location = "NWIS:10263500";
java.lang.String variable = "NIWS:00060";
java.lang.String startDate = "2001-01-01";
java.lang.String endDate = "2001-12-31";
java.lang.String authToken = "";

A screenshot from the code editor is shown below.

34

public static void main(3tring[] args){
String sitefode = null:;
String siteName = null;

try { // Call Web Zerwvice Operation
org.cuashi.wof.ws.nwis. . MWISDailyValues serwvice =
new org.cuashi.wof.ws.nwiz MWISDailyValues () ;
org.cuashi.wof.wa.nwis. WMaterneFlow port =
service.getWaterOneFloxr() ;
A4 TODD initialize WS operation argquments here
java.lang. 3tring location = "NWIZ:10Z635007;
jawva. lang. 3tring wariable = "NIW3: 000560 ;
jawva.lang. 3tring startDate = "2001-01-01;
jawva. lang. 3tring endbate = "2001-12-31";
jawva. lang. 3tring authToken = "
A4 TODO process result here

org.cuashi.wof.we.nwis. TineleriesResponseType result =
port.getValuesObject (location, wariahle, startDate, endDate, authToken):
System. out.println("Eesult = "+result):
1 catch (Exception ex) !
S5 TODN handle custom exceptions here

Now you will create variables to store the site code and name as read from the web service.

8. In the main procedure, above the try statement, add the following lines of code.

String siteCode = null;
String siteName = null;

A screenshot of the code editor is shown below.

public static woid main(%tring[] args){
Jtring siteCode = null;
Jtring sitelName = null;

try { /F Call Web 3ervice Dperation

To output the datetimes and values in the time series, you will use a List object.

9. Below the package declaration, add an import statement for the List library.

|import java.util.List;

A screenshot from the code editor is shown below.

35

package wof;

Flimport java.util.List:

?J,n".\".\'

You will now tell the IDE to output the site code and site name to the Output window of the IDE.

10. At the end of the try statement, replace the line that begins with “System.out.println” with
the following lines of code, in order to output the site information:

org.cuashi.wof.ws.nwis.SiteInfoType sit =
(org.cuashi.wof.ws.nwis.SiteInfoType)
result.getTimeSeries () .getSourcelInfo() ;
siteCode = sit.getSiteCode () .get(0) .getValue() ;
siteName = sit.getSiteName () ;

System.out.println("siteCode = "+siteCode);
System.out.println("siteName "+siteName) ;

A screenshot from the code editor is shown below.

S TODO process result here
org.cuashi.wof.wa. nwis. Tine3eriesEesponseType result =
port.get¥aluesOhject (location, wariable, startDate, endDate, authToken):

org.cuashi.wof.we.nwis, 5itelnfoType sit =

[org.cuashi.wof.wes.nwis, 5itelnfoType) result.getTimeSeries () .getSourceInfol() ;
siteCode = sit.getSiteCode().get (0).getValue():
sitellane = sit.getSiteHame () ;

Systen, out.println(“sziteCode = "+ziteCode);
SJvsten. out.println("sitelane = "+sitelName) ;

} catch [(Exception ex) {
S4 TODO handle custom eXceptions here

i

Some notes on the above code logic: You are working with objects, so you need to do some type
casting in order to get the correct object. The line below takes a sourcelnfo type and casts it to a
sitelnfo type.

org.cuashi.wof.ws.nwis.SiteInfoType sit =
(org.cuashi.wof.ws.nwis.SiteInfoType)
result.getTimeSeries () .getSourcelInfo() ;

At present, there are two possible sourcelnfo types: siteInfoType, and dataSetinfoType. If we
were writing a more complete generic parser, we would use getClass().getName(), and cast based
on the object type.

Finally, you will add code to output the time series values.

36

11. Add the flowing code after the last “System.out.println” line that you just added.

System.out.format ("%20s %10s","DateTime","Value");
System.out.println () ;
List<org.cuashi.wof.ws.nwis.ValueSingleVariable> valuesList =

result.getTimeSeries () .getValues () .getValue () ;
for (org.cuashi.wof.ws.nwis.ValueSingleVariable value : valuesList) {
System.out.format ("$20s %10.4f",
value.getDateTime () . toString () ,value.getValue()) ;

System.out.println() ;

A screenshot from the code editor is shown below.

Jysten. out.println(“ziteCode = "+siteCode);
Jysten. out.println(“zitelane = "+zitelNane) ;

Systen. out. format (3202 %1027, "DateTime™ ,"Value™)
Systen.out.printlni) ;
List<org.cuashi.wof.ws.nwis.ValuelingleVariahle> walueslist =
result.getTimeSeries () .getValues () .getValue () ;
for [(org.cuashi.wof.ws.nwis.ValueldingleVariable walue @ walueslList)
System. out. format (%203 %10.4£7,
value.getDateTime () .toString () ,value.getV¥alue()) ;
Syotem. out.println()

}
} catch (Exception ex] {
A4 TODO handle custom exceptions here

In the above code, we use a List and a for loop, which are features of java 1.5 and above. We
loop through the set of values, and output formatted strings.

When finished, the code for the main method should look as follows. Note that text for long
lines is wrapped.

public static void main(String[] args) {
String siteCode = null;
String siteName = null;

try { // Call Web Service Operation
org.cuashi.wof.ws.nwis.NWISDailyValues service =
new org.cuashi.wof.ws.nwis.NWISDailyValues () ;
org.cuashi.wof.ws.nwis.WaterOneFlow port =
service.getWaterOneFlow () ;
// TODO initialize WS operation arguments here

java.lang.String location = "NWIS:10263500";
java.lang.String variable = "NIWS:00060";
java.lang.String startDate = "2001-01-01";
java.lang.String endDate = "2001-12-31";

— nn.
4

java.lang.String authToken

37

// TODO process result here
org.cuashi.wof.ws.nwis.TimeSeriesResponseType result =
port.getValuesObject (location, variable, startDate,
endDate, authToken);

org.cuashi.wof.ws.nwis.SiteInfoType sit =
(org.cuashi.wof.ws.nwis.SiteInfoType)
result.getTimeSeries () .getSourceInfo () ;
siteCode = sit.getSiteCode () .get(0) .getValue() ;
siteName = sit.getSiteName () ;

System.out.println ("siteCode "+siteCode) ;
System.out.println ("siteName = "+siteName) ;

System.out.format ("%20s $10s","DateTime", "Value");
System.out.println();
List<org.cuashi.wof.ws.nwis.ValueSingleVariable> valuesList =
result.getTimeSeries () .getValues () .getValue() ;
for (org.cuashi.wof.ws.nwis.ValueSingleVariable value
valuesList) {
System.out.format ("%20s $10.4f",
value.getDateTime () . toString(),value.getValue())
System.out.println();
}
} catch (Exception ex) {
// TODO handle custom exceptions here

}

With the code finished, all that is left is to compile and run the file.

12. In the Projects window, right click on nwis.java and then click Compile File.

: Projects 10 X :Files : Runtime
B NwisOneFlow
Elh_@ Source Packages
=T wef
B

1,_@ Test Packages Cpen

13. In the Projects window, right click on nwis.java and then click Run File.

38

Projects I % | ‘Files ‘Runtime
= MwisOneFlow
=-I[F Source Packages

S wof
: - @ iz, java
+._@ Test Packages CIpEn
-8 Libraries ompile File Fg

+ -ILg Test Libraries

= Wb S f=F

Run File Shift+Fa&

In @ moment, you will see the results of the GetValuesObject call as text in the Output window.

: Ouktput F X
Retriever Qukput = | MwisOneFlow (run-single) =
init: s
deps-jar:
wsimport—init:
wsimport—-client-check-DailyVWalues_ asmx:
wsinport-client-LailyWalues. asnx:
wsimport-client-generate:
wsimport-client-compile:
compile-single:
run-single:
siteCode = 10Z&3500

siteName = BIG ROCE C NE VALTERMO CA

DateTime Talue

Z001-01-01TO0:00: 00 Z.32000

Z001-01-0zT0O0:00:00 Z.4000

Z001-01-03T0O0:00:00 Z.4000

Z001-01-04T0O0:00:00 Z.4000

Z001-01-05T0O0:00:00 Z.4000

Z001-01-0&5T0O0: 00z 00 z.&5000

Z001-01-07T0o0:00:00 Z.4000

Z001-01-08T00: 00z 00 Z.4000

Z001-01-02T00:00:00 Z.&6000 3

FOM1L=N1—10T00- 0= 00 =nnnn

Congratulations! You have created a Java class which calls the NWIS web service to retrieve
time series data. This concludes the exercise.

39

Appendix A: Source Code for parse_xml.m

Function extracted from xmltools.m so that it could be called directly
David Tarboton 3/19/06
xmltools.m originally Matlab File Exchange

o o° oe

o

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=3074

Q

°

function [z, str] = parse xml(str, current tag, current value, attribs, idx)
next = 'child';

if nargin < 2

current tag = "'';
current value = '';
attribs = '";
idx = 0;

end

z = [1];

eot = 0;

while ~eot & ~isempty(udeblank (deblank(str)))

f end = strfind(str, '</');
f beg strfind(str, '<");

%< Si je n'ai plus de tag dans mon document
if isempty(f end) & isempty (f beg)

if ~strcmp (lower (current tag), '?xml') & ~isempty(current tag)

error ('xmltools:parse xml', 'malformed xml string (current [%s])',
current tag);

else
fprintf ('end parsing at level %d\n', idx);
eot = 1;
return

end

end

5>

if isempty (f end)

f end = length(str)
else

f end = £ end(1);
end
if isempty (f begqg)

f beg = length(str)
else

f beg = £ beg(l);
end

if £ end <= f beg
%< je rencontre une fermeture

40

new_tag = str((f_end+2):end);
str_t str(l:f end-1);

f end = strfind(new_tag, '>");
if isempty (f end)

error ('xmltools:parse xml', 'malformed xml string : never ending tag
[$s] encountered', current tag);
end
f end = £ end(1);
str = new_tag(f end+l:end); % reste

new_tag = new_tag(l:f end-1);
if ~strcmp (upper (new_tag), upper (current tag))

error ('xmltools:parse xml', 'malformed xml string : [%s] not properly
closed (closing [%s] encountered)', current tag, new tag);
end
% fprintf ('$sclose [%s]\n', repmat(' ', 2*(idx-1),1), current tag);
z.tag = upper (current tag);
z.attribs = parse attribs(attribs);
z.value = udeblank (deblank (sprintf ('%s %s',current value, str t)));
eot = 1;

%>
else
%< je rencontre une ouverture
% je vals appeler le méme code sur ce qu'il y a apres moi

current value = sprintf('%s %s', current value, str(l:f beg-1));
new_ tag = str(f beg+l:end);

f end = strfind(new_tag, '>");
if isempty (f_end)

error ('xmltools:parse xml', 'malformed xml string : never ending tag
encountered') ;
end
f end = f end(1);
str_ t = new_tag(f end+l:end);
new tag = new _tag(l:f end-1);
if (new_tag(end) == '/')I(new_tag(end) == '?")
%< Self closing tag
% Je met (temporairement!) eot a 1, cela me permet de passer quelques
lignes
% de code tranquilement
eot = 1;
&>
end
%< Attributs
f beg = strfind(new_tag, ' ');

if isempty (f begq)
new attribs = '';

if eot

new tag = new_tag(l:end-1);
end

else
new attribs = new tag(f beg+l:end);
if eot

new attribs = new attribs(l:end-1);
end
new_ tag = new_tag(l:f beg-1);

end

>

% fprintf ('%sopen [$s]\n', repmat (' ', 2*idx, 1), new tag);

41

if eot
%< If self-colsing tag
% fprintf ('$sclose [%s]\n', repmat(' ', 2*idx,1l), new tag);
new attribs = parse attribs(new attribs);
if isfield(z, next)
nxt = getfield(z, next);

nxt (end+1l) = struct('tag', new _tag, 'attribs', new attribs, 'value',
"', next, [1);
z = setfield(z, next, nxt);
%z.(next) (end+l) = struct('tag', new tag, 'attribs', new attribs,
'value', '', next, []);
else
z = setfield(z, next, struct('tag', new _tag, 'attribs', new attribs,
'value', '', next, [1));
%z.(next) = struct('tag', new tag, 'attribs', new attribs, 'value', '',
next, []);
end
str = str_t;
eot = 0;
s>
else

%< Appel du méme code sur la suite

o

et stockage du resultat dans mes children.
Le code met aussi a jour le string courant |str]|,
il en enleve la partie correspondant au string que je viens de

oe

oe

trouver.
[t,str] = parse xml(str_t, new tag, '', new attribs, 1+idx);
if isfield(t, next)
nx = getfield(t, next);
$nx = t. (next);
else
nx = [];
end
if isfield(z, next)
nxt = getfield(z, next);

nxt (end+1l) = struct('tag', t.tag, 'attribs', t.attribs, 'value',
t.value, next, nx);
z = setfield(z, next, nxt);
%z. (next) (end+1l) = struct('tag', t.tag, 'attribs', t.attribs, 'value',
t.value, next, nx);
else
z = setfield(z, next, struct('tag', t.tag, 'attribs', t.attribs, 'value',
t.value, next, nx));
%z.(next) = struct('tag', t.tag, 'attribs', t.attribs, 'value', t.value,
next, nx);
end
&>
end
end
%>
end

oe
\

42

%< Parse attribs

function z = parse attribs(a)

if isempty(a)
z = struct('name', '', 'value', '"');
return

end

b = tokens(a, ' ");

3= 1

for i=1l:1length (b)
if ~isempty(b{i})
t = tokens(b{i}, '="');
if length(t)==
u = t{2};
if u(l)y=="""
u = u(2:end);
end
if u(end)=="""
u = u(l:end-1);
end
z(3)
else
z(j) = struct('name', upper(a), 'value', "'"");
end
j =3 +L;
end
end
5>

struct ('name', upper(t{l}), 'value', u);

$<* Ecriture d'une structure xml
function z = write xml (fid, xml struct, idx)

next = 'child';

if nargin < 3

idx = 0;
end
margin = repmat (' ',2*idx,1);

closed tag = 1;
%< Ouverture du tag
if isfield(xml struct, 'tag')
closed tag = 0;
fprintf (fid, '%s<%s', margin, xml struct.tag);
%< Ecriture des attributs
if ~isfield(xml struct, 'attribs')
error ('xmltools:write xml', 'malformed MATLAB xml structure : tag without
attribs');
end
for i=l:length(xml struct.attribs)
if ~isempty(xml struct.attribs (i) .name)

fprintf (fid, ' %s="%s"', xml struct.attribs (i) .name,
xml struct.attribs (i) .value);
end

end
>

43

%< Gestion des Auto closed tags

% Si le tag n'est pas auto fermé, alors |closed tag| est a zéro
if ~isfield(xml struct, next)

error ('xmltools:write xml', 'malformed MATLAB xml structure : tag
without %s', next);
end
if ~isfield(xml struct, 'value')
error ('xmltools:write xml', 'malformed MATLAB xml structure : tag without
value');
end

if xml struct.tag(l) == '2'
fprintf (fid, '?>\n');

closed tag = 1;

elseif isempty(getfield(xml struct, next)) & isempty(xml struct.value)
selself isempty(xml struct. (next)) & isempty(xml struct.value)

fprintf (fid, '/>\n');
closed tag = 1;
else
fprintf (fid, '>\n'");
end
s>
end
5>

%< Ecriture de la value
if isfield(xml struct, 'value')
if ~isempty(xml struct.value)
fprintf (fid, '%s%s\n', margin, xml struct.value);
end
end
&>

%< Ecriture des enfants
if ~isfield(xml struct, next)

error ('xmltools:write xml', 'malformed MATLAB xml structure : tag
without %s', next);
end
those children = getfield(xml struct, next);
$those children = xml struct. (next);

for i=1:length(those children)
write xml (fid, those children (i), idx+1);

end

5>

%< Fermeture du tag
if ~closed tag

fprintf (fid, '%s</%s>\n', margin, xml struct.tag);
end

%<* get childs with a specific tag name
function z = get childs(z, next, tag name);
u = getfield(z, next);

44

zo = [];
for i=1l:1length (u)
v = u(i);
if strcmp (upper(v.tag), upper (tag name))
if isempty(zo)
z0O.anext= v;
else
zo.anext (end+1l) = v;
end
end
end
if ~isstruct(zo)
if isfield(z, 'tag')
tn = z.tag;
else
tn = 'root?';
end
error ('XMLTOOLS:GET-TEG', 'problem in finding tag <%s> under one <%s>',
tag name, tn);
end
z = [zo.anext 1;
E>*

$< udeblank
function s = udeblank(str)
s = deblank(str(end:-1:1));
s = s(end:-1:1);
if length(s)==

Szll;
end

%< emptystruct

function z = emptystruct (next)

z = struct('tag', [], 'value', [], 'attribs', [], next, []);
&>

%< Tokens

function 1 = tokens(str,del)

1={} ;

% Boucle sur les tokens.

del = sprintf (del) ;

while ~isempty(str)
[tok,str] = strtok(str,del) ;
l{end+1} = tok ;

end

%>

45

Appendix B: Source Code for MODISPIlot_xml.m

[

% Initialize variables.
clear values
clear dn

% Create class.
wsdl="http://water.sdsc.edu/waterOneFlow/MODIS/Service.asmx?WSDL';
createClassFromWsdl (wsdl) ;

% This creates an instance of the class.
svsMODIS = MODIS;

o)

% Specify input parameters.

w="'-98.2" % West longitude.

s='30" % South latitude.

e='-97.3'" % East longitude.

n="'30.7" % North latitude.

location=['GEOM:BOX (',w,"' ',s,',",e," ",n,")"']

% Variable Code 11 = Cloud Optical Thickness Water Phase.
variableCode="'MODIS:11/plotarea=land’
startDate='2004-01-01"

endDate='2004-12-01"

% Call the GetValues function to get the time series data.
xmlValues=GetValues (svsMODIS, location,variableCode,
startDate,endDate, '"')

% Parse the XML string.
structValues=parse xml (xmlValues) ;

% Report the name and units of the chosen variable.
display (structValues.child.child(2) .child(2) .child(2) .value)
display (structValues.child.child(2) .child(2) .child(3) .value)

% Get the <value> tags.
Recs=structValues.child.child (2) .child(3) .child;
[dl,d2]=size (Recs)
% Build arrays of datetimes and values.
for i=1:d2
% Reformat date to that Matlab can understand it.
datetime=Recs (i) .attribs (1) .value;
year=datetime (1:4);
month=datetime (6:7);
day=datetime (9:10) ;
datetime=[month,'/',day,'/"',year];
dn (i)=datenum(datetime); % Convert to numeric date.
% Read the time series value.
values (i) =str2double (Recs (i) .value) ;
end

46

% Plot the graph.
plot (dn,values) ;datetick;

o)

grid on % Turn on grid lines for this plot.

47

Appendix C: Source Code for nwis.java Class

/*

* nwis.java

*

* Created on November 10, 2006, 1:15 PM

*

* To change this template, choose Tools Template Manager
* and open the template in the editor.

*/

package wof;
import Jjava.util.List;
public class nwis {

/** Creates a new instance of nwis */
public nwis () {
}
public static void main(String[] args) {
String siteCode = null;
String siteName = null;

try { // Call Web Service Operation
org.cuashi.wof.ws.nwis.NWISDailyValues service =
new org.cuashi.wof.ws.nwis.NWISDailyValues() ;
org.cuashi.wof.ws.nwis.WaterOneFlow port =
service.getWaterOneFlow () ;
// TODO initialize WS operation arguments here

java.lang.String location = "NWIS:10263500";
java.lang.String variable = "NIWS:00060";
java.lang.String startDate = "2001-01-01";
java.lang.String endDate = "2001-12-31";
java.lang.String authToken = "";

// TODO process result here
org.cuashi.wof.ws.nwis.TimeSeriesResponseType result =
port.getValuesObject (location, variable, startDate,
endDate, authToken);

org.cuashi.wof.ws.nwis.SiteInfoType sit =
(org.cuashi.wof.ws.nwis.SiteInfoType)

result.getTimeSeries () .getSourceInfo();
siteCode = sit.getSiteCode () .get (0) .getValue();
siteName = sit.getSiteName () ;

System.out.println("siteCode "+siteCode) ;
System.out.println("siteName = "+siteName) ;

System.out.format ("%$20s $10s","DateTime", "Value") ;
System.out.println();
List<org.cuashi.wof.ws.nwis.ValueSingleVariable> valuesList =
result.getTimeSeries () .getValues () .getValue();
for (org.cuashi.wof.ws.nwis.ValueSingleVariable value
valuesList) {

48

System.out.format ("%20s $10.4f",
value.getDateTime () .toString (), value.getValue());
System.out.println();
}
} catch (Exception ex) {
// TODO handle custom exceptions here

}

49

