

HIS document 5

CUAHSI WaterOneFlow
Workbook

(version 1.0)

A guide to using CUAHSI’s WaterOneFlow web services
to retrieve hydrologic time series data

December 2007

Prepared by:

Tim Whiteaker

Center for Research in Water Resources
University of Texas at Austin

Distribution
Copyright © 2007 University of Texas at Austin

CUAHSI’s WaterOneFlow web services are documented at the following URL:
http://water.sdsc.edu/waterOneFlow/

Disclaimers
Although much effort has been expended in the development and testing of the
WaterOneFlow and HydroObjects, errors and inadequacies may still occur. Users
must make the final evaluation as to the usefulness of WaterOneFlow and
HydroObjects for his or her application.

Acknowledgements
The team of engineers, scientists and research assistants that contributed to this
document includes:

Tim Whiteaker (editor), Research Associate, Center for Research in Water

Resources, University of Texas, Austin, TX.
David Tarboton, Professor, Civil and Environmental Engineering, Utah State

University, Logan, UT.
Jon Goodall, Assistant Professor, Nicholas School of the Environment and Earth

Sciences, Duke University, Durham, NC.
David Valentine, GIS Programmer, San Diego Supercomputer Center, University

of California at San Diego, La Jolla, CA.
Ernest To, Doctoral Candidate, Center for Research in Water Resources,

University of Texas, Austin, TX.
Bora Beran, Doctoral Candidate, Computational Hydraulics Lab, Drexel

University, Philadelphia, PA.
Thiha Min, Research Assistant, Center for Research in Water Resources,

University of Texas, Austin, TX.

Funding
Funding for the work described in this document was provided by the Consortium
of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) under
NSF Grant No. EAR-0413265. In addition, much input and feedback has been
received from the CUAHSI Hydrologic Information System development team.
Their contribution is acknowledged here.

 i

http://water.sdsc.edu/waterOneFlow/

Technical Support
If you find errors, or have feedback, please contact:

Tim Whiteaker
Center for Research in Water Resources
University of Texas at Austin
10100 Burnet Rd., Bldg 119
Austin, TX 78758
twhit@mail.utexas.edu

 ii

Table of Contents

Distribution..i

Disclaimers...i

Acknowledgements..i

Technical Support ..ii

1.0 Introduction ...1

1.1 WaterOneFlow Web Services... 1
1.2 WaterOneFlow Web Service Methods and Output .. 2

1.2.1 GetSiteInfo/GetSiteInfoObject ... 3
1.2.2 GetVariableInfo/GetVariableInfoObject .. 4
1.2.3 GetValues/GetValuesObject ... 4

1.3 Document Outline... 5
1.4 Obtaining This Workbook .. 6

2.0 Data Sources ..7

2.1 USGS National Water Information System (NWIS) .. 7
2.2 EPA STORAGE & RETRIEVAL SYSTEM (EPA STORET) 7
2.3 Moderate Resolution Imaging Spectroradiometer (MODIS) ... 7
2.4 Daymet.. 8
2.5 North American Mesoscale model (NAM)... 8
2.6 Susquehanna River Basin Hydrologic Observatory System (SRBHOS) 9

3.0 Ingesting Susquehanna River Basin Data into Excel with
HydroObjects..10

3.1 Introduction... 10
3.2 Computer Requirements ... 10
3.3 Installation... 10
3.4 Downloading Susquehanna River Basin Data .. 12

3.4.1 Specifying the Data Source... 13
3.4.2 Getting a List of Sites ... 14
3.4.3 Getting a List of Variables.. 14
3.4.4 Obtaining Site and Variable Information.. 15
3.4.5 Getting the Site Catalog .. 18
3.4.6 Downloading Time Series Data .. 19

3.5 Extending this Example .. 20

 iii

4.0 Ingesting STORET Data into Excel with HydroObjects22

4.1 Introduction... 22
4.2 Computer Requirements ... 22
4.3 Installation... 22
4.4 Downloading EPA STORET Data.. 22

4.4.1 Obtaining Site and Variable Information.. 23
4.4.2 Downloading Time Series Data .. 25

5.0 Ingesting Weather and Streamflow Data into ArcGIS.............27

5.1 Introduction... 27
5.2 Computer and Skill Requirements .. 28
5.3 Installation... 28
5.4 Retrieving Data with Weather Downloader.. 30

5.4.1 Opening the Map... 30
5.4.2 Adding Weather Downloader to ArcMap... 31
5.4.3 Downloading Weather Data.. 33

5.5 Downloading Data from Other Web Services .. 41

6.0 Plotting MODIS Data with Matlab..44

6.1 Introduction... 44
6.2 Computer and Skill Requirements .. 44
6.3 Procedure .. 44

6.3.1 Setting up the XML Parser ... 44
6.3.2 Retrieving MODIS Data ... 45

7.0 Ingesting NWIS Data using VB.Net...51

7.1 Introduction... 51
7.2 Computer and Skill Requirements .. 51
7.3 Accessing NWIS Data with a VB.Net Windows Application...................................... 51

7.3.1 Setting up the Project .. 51
7.3.2 Creating the Web Reference ... 52
7.3.3 Building the User Interface... 54
7.3.4 Writing the Code... 58
7.3.5 Running the Code ... 60

8.0 Ingesting NWIS Data Using Java ..62

8.1 Computer and Skill Requirements .. 62
8.2 Procedure .. 62

8.2.1 Creating a New Project ... 62
8.2.2 Creating a Web Service Client.. 63
8.2.3 Creating a Class to Consume the Web Service... 65

 iv

Appendix A: Source Code for parse_xml.m.......................................73

Appendix B: Source Code for MODISPlot_xml.m............................79

Appendix C: Source Code for nwis.java Class81

 v

1.0 Introduction
One of the key programs of the Consortium of Universities for the Advancement of Hydrologic
Science (CUAHSI) is the development of Hydrologic Information Systems (HIS), which
facilitate the integration of data and software to support hydrologic science. A main component
of CUAHSI HIS is WaterOneFlow web services, which provide programmatic access to a
growing collection of national, state, and individual investigator hydrologic observation
repositories. This document describes how to use WaterOneFlow web services and methods,
with tutorials providing examples of data access in a variety of software environments.

1.1 WaterOneFlow Web Services
Wikipedia gives the following definition for a web service:

According to the W3C a Web service is a software system designed to support
interoperable machine-to-machine interaction over a network. It has an interface that is
described in a machine-processable format such as WSDL. Other systems interact with
the Web service in a manner prescribed by its interface using messages, which may be
enclosed in a SOAP envelope, or follow a RESTful approach.

When a web service is published on the Internet, a computer with an Internet connection can call
upon the web service to perform useful work.

CUAHSI WaterOneFlow web services facilitate the retrieval of hydrologic observations data.
While several repositories of national hydrologic data are already available online, each data
provider uses its own methodology for querying data, and its own output format for returning
data. WaterOneFlow web services provide a common methodology and output format for these
data sources, and permit data access directly from within the user’s preferred software
environment, rather than requiring the user to navigate to the data provider’s web page, query
data, and save the data locally.

WaterOneFlow web services have been developed for the following national networks:

USGS National Water Information System (NWIS) – national database of streamflow, water
quality, and groundwater data
http://water.sdsc.edu/waterOneFlow/NWIS/DailyValues.asmx
http://water.sdsc.edu/waterOneFlow/NWIS/UnitValues.asmx
http://water.sdsc.edu/waterOneFlow/NWIS/Data.asmx
http://water.sdsc.edu/waterOneFlow/NWIS/Groundwater.asmx

EPA STORET – national database of water quality data
http://water.sdsc.edu/waterOneFlow/EPA/cuahsi_1_0.asmx

Daymet – daily surfaces of temperature, precipitation, humidity, and radiation for the contiguous
United States
http://water.sdsc.edu/waterOneFlow/DAYMET/Service.asmx

 1

http://water.sdsc.edu/waterOneFlow/NWIS/DailyValues.asmx
http://water.sdsc.edu/waterOneFlow/NWIS/UnitValues.asmx
http://water.sdsc.edu/waterOneFlow/NWIS/Data.asmx
http://water.sdsc.edu/waterOneFlow/NWIS/Groundwater.asmx
http://water.sdsc.edu/waterOneFlow/EPA/cuahsi_1_0.asmx
http://water.sdsc.edu/waterOneFlow/DAYMET/Service.asmx

MODIS – remotely sensed meteorological, oceanographic, and hydrologic data for the world
http://water.sdsc.edu/waterOneFlow/MODIS/Service.asmx

North American Mesoscale model (NAM) – prediction of climate variables for North America
http://water.sdsc.edu/waterOneFlow/NAM12k/Service.asmx

In addition to these national datasets, several academic investigator datasets are also now
available as WaterOneFlow web services, such as the Susquehanna River Basin Hydrologic
Observatory System.

These data sources are further described in Chapter 2.

To access a catalog of national networks currently available through WaterOneFlow, use the
service at:
http://water.sdsc.edu/waterOneFlow/NETWORKS/Service.asmx

1.2 WaterOneFlow Web Service Methods and Output
To standardize access to these data sources, WaterOneFlow web services implement the
following core methods regardless of data provider:

• GetSiteInfo
• GetSiteInfoObject

• GetVariableInfo
• GetVariableInfoObject

• GetValues
• GetValuesObject

In addition to consistent method names, WaterOneFlow services use consistent method
signatures, and provide output in a consistent format, regardless of data provider. Thus, if you
learn how to use the WaterOneFlow services for NWIS, you should easily be able to make the
jump to using the WaterOneFlow service for EPA STORET.

For the methods with the suffix “Object” in the method name, data are returned in object format.
For the other methods, data are returned in XML format. Both Object and XML formats are
provided to suit the developer’s preference, or to accommodate the application programming
environment of the developer.

NOTE: All methods include an authorization token parameter (authToken). This token permits
CUAHSI to restrict access to web services. For the services described in this workbook, any
authorization token will work, as all of these services are publicly available.

General documentation about CUAHSI web services can be found at

 2

http://water.sdsc.edu/waterOneFlow/MODIS/Service.asmx
http://water.sdsc.edu/waterOneFlow/NAM12k/Service.asmx
http://water.sdsc.edu/waterOneFlow/NETWORKS/Service.asmx

http://water.sdsc.edu/waterOneFlow/

Below is a brief summary of the core WaterOneFlow methods.

1.2.1 GetSiteInfo/GetSiteInfoObject
This method returns basic information about a site, such as its name, location, and a list of
variables available at the site for time series retrieval. The method has the following signature:

GetSiteInfo(String location, String authToken)

Input Parameters:
location
For networks which measure data at discrete sites, such as NWIS, this location parameter should
be written as “NetworkName:SiteCode”. For example, to specify the NWIS stream gage at the
Colorado River at Austin (site code 08158000), use the following value for the location
parameter:

"NWIS:08158000"

For networks that return a time series for any point in space (such as Daymet), use the
convention “GEOM:POINT(Longitude Latitude)”. For example, to specify a point at 113
degrees West Longitude and 45 degrees North Latitude, use the following value for the location
parameter:

"GEOM:POINT(-113 45)"

For networks that return a time series for a box defined by Latitude and Longitude coordinates
(such as MODIS), use the convention “GEOM:BOX(WestLongitude SouthLatitude,
EastLongitude NorthLatitude)”. For example, to specify a box that covers the whole earth, use
the following value for the location parameter:

"GEOM:BOX(-180 -90,180 90)"

authToken
This parameter allows a data provider to restrict or monitor access to its web services, by
requiring a password or some other means of identification in order to use a given web method.
In many cases, this paramter may be left as an empty string, “”.

Example VB.Net Code
Dim ws As New [WsReference]
Dim result As String = ws.GetSiteInfo("NWIS:08158000", "")
Debug.Write(result)

 3

http://water.sdsc.edu/waterOneFlow/

1.2.2 GetVariableInfo/GetVariableInfoObject
This method returns information about a time series variable, such as name and units. The
method has the following signature:

GetVariableInfo(String variable, String authToken)
Input Parameters:
variable
To specify a variable, you must include both the network name and the variable code within the
network, in the following format: “NetworkName:VariableCode”. For example, to query the
NWIS website for information about variable code 00010 (which happens to be water
temperature), you would use the following value for the variable parameter:

"NWIS:00010"

authToken
This parameter allows a data provider to restrict or monitor access to its web services, by
requiring a password or some other means of identification in order to use a given web method.
In many cases, this paramter may be left as an empty string, “”.

Example VB.Net Code
Dim ws As New [WsReference]
Dim result As String = ws.GetVariableInfo("NWIS:00010", "")
Debug.Write(result)

1.2.3 GetValues/GetValuesObject
This method returns a time series for a given variable at a given location. The method has the
following signature:

GetValues(String location, String variable, String startDate, String endDate,
String authToken)

Input Parameters:
location
The location parameter is the same as for the GetSiteInfo method.

variable
The variable parameter is the same as for the GetVariableInfo method, except that this parameter
may also include options for data retrieval. The parameter should be specified as follows:

"NetworkName:VariableCode/Option=Value"

In most cases, no option is required, and the “NetworkName:VariableCode” format may be used.
Some networks, such as MODIS, do require an option to be set. As an example, to retrieve data
for Cloud Optical Thickness in the Water Phase from MODIS, for a spatial average that includes
both the land surface and the ocean, you would use the following value for the variable
parameter:

 4

"MODIS:11/plotarea=landocean"

startDate
This parameter specifies the start datetime for which time series records are desired. For
networks that return time series with a temporal precision of one day or longer, use the following
format for the startDate:

"yyyy-mm-dd"

For example, to specify the last day of 2003 as the start date for time series retrieval, use the
following value for the startDate parameter:

"2003-12-31"

For networks with a temporal precision shorter than one day, you may specify the hours and
minutes and so on with the format below:

"yyyy-mm-ddThh:mm:ss"

For example, to specify 6:30 AM on the last day of 2003, use the following value:

"2003-12-31T06:30"

endDate
This parameter specifies the end datetime for which time series records are desired. The format
is the same as for the startDate parameter.

authToken
This parameter allows a data provider to restrict or monitor access to its web services, by
requiring a password or some other means of identification in order to use a given web method.
In many cases, this paramter may be left as an empty string, “”.

Example VB.Net Code
Dim ws As New [WsReference]
Dim result As String = ws.GetValues("NWIS:08158000", _
 "NWIS:00010", _
 "2003-01-01", _
 "2003-12-31", _
 "")
Debug.Write(result)

1.3 Document Outline
The document is created in the form of a series of tutorials. Except for the first two chapters
(Introduction and Data Sources), each chapter in the document is a tutorial on how to use
different software or programming environments to access different WaterOneFlow web services
and methods. The links for obtaining installation and data files for each tutorial are provided in
the tutorial. In the current version of the document, you will learn how to access data from USGS
NWIS, EPA STORET, MODIS, Daymet, NAM and an academic investigator database, from

 5

Excel, ArcGIS, Matlab, VB.Net and Java. Each chapter/tutorial covers one
software/programming environment dealing with one or more of the five data sources. The
outline of this document is as follows:

Chapter 1 – Introduction
Chapter 2 – Data Sources
Chapter 3 – Ingesting data into Excel (Susquehanna River Basin example)
Chapter 4 – Ingesting data into Excel (STORET example)
Chapter 5 – Ingesting data into ArcGIS (Daymet, NAM and NWIS example)
Chapter 6 – Ingesting data into Matlab (MODIS example)
Chapter 7 – Ingesting data using VB.Net (NWIS Unit Values example)
Chapter 8 – Ingesting data using Java (NWIS Daily Values example)

1.4 Obtaining This Workbook
This workbook is available at the following location, with the title “CUAHSI WaterOneFlow
Workbook”:

http://www.cuahsi.org/his/documentation.html

In the following location, you will also find a folder for installation files required by some of the
exercises in this document, as well as a folder containing some solution files.

ftp://ftp.crwr.utexas.edu/pub/outgoing/CUAHSI/HIS_workbook/20070720/

 6

http://www.cuahsi.org/his/documentation.html
ftp://ftp.crwr.utexas.edu/pub/outgoing/CUAHSI/HIS_workbook/20070720/

2.0 Data Sources
This chapter describes some of the data sources for which WaterOneFlow web services have
already been created.

2.1 USGS National Water Information System (NWIS)
Data providing organization: United States Geological Survey (USGS)

Website: http://waterdata.usgs.gov/nwis

The USGS NWIS is a comprehensive and distributed program that supports acquisition,
processing and storage of water data. Most of the data stored in NWIS is available through
NWIS website provided above (NWIS Web). The data available via NWIS web mainly include
information on quantity and quality of surface and ground water. NWIS web serves both
historical and real time data. The real time data, however, is not available for all sites.

Data provided by NWISWeb are regularly updated from NWIS. Real-time data are generally
updated upon receipt at local Water Science Centers. NWISWeb provides access to data by
category, such as surface water, ground water, or water quality, and by geographic area. NWIS
data are available for all 50 states, plus border and territorial sites, and include data from as early
as 1899 (at few stations) to present. Of the over 1.5 million sites with NWIS data, the vast
majority (about 800,000) are for groundwater wells, about 25,000 sites are for streamflow data,
and about 9,800 of the sites provide real-time data. In addition there are many sites with
atmospheric data such as precipitation, and there are nearly 70 million water-quality results from
about 4 million water samples collected at hundreds of thousands of sites.

2.2 EPA STORAGE & RETRIEVAL SYSTEM (EPA STORET)
Data providing organization: Environmental Protection Agency (EPA)

Website: http://www.epa.gov/storet/

EPA STORET is a repository for water quality, biological, and physical data and is used by state
environmental agencies, federal agencies and universities. Most of the data is available through
the STORET website which can be accessed using the link above. STORET maintains two
systems; ‘legacy STORET’ and its successor ‘modernized STORET’. Legacy STORET has been
static since January 1, 1999 while modernized STORET gets updated on a monthly basis.
Currently EPA STORET receives data from 279 organizations adding up to about 275,000
stations.

2.3 Moderate Resolution Imaging Spectroradiometer (MODIS)
Data providing organization: National Aeronautics and Space Administration (NASA)

Website: http://g0dup05u.ecs.nasa.gov/Giovanni/modis.MOD08_M3.shtml

 7

http://waterdata.usgs.gov/nwis
http://www.epa.gov/storet/
http://g0dup05u.ecs.nasa.gov/Giovanni/modis.MOD08_M3.shtml

The Goddard Earth Sciences Data and Information Services Center (GES DISC) has created the
GES DISC Interactive Online Visualization and Analysis Infrastructure (Giovanni) to enable
Web-based visualization and analysis of satellite remotely sensed meteorological,
oceanographic, and hydrologic data. The MODIS data are available through one of the Giovanni
interfaces called the MODIS Online Visualization and Analysis (MOVAS). The MOVAS
system, operational since September 2003, provides access to download, visualize and analyze
MODIS Level-3 atmospheric monthly products. The MODIS Level-3 data includes monthly 1 x
1 degree grid average values of atmospheric parameters related to atmospheric aerosol particle
properties, total ozone burden, atmospheric water vapor, cloud optical and physical properties,
and atmospheric stability indices.

The data are available for the entire globe from March 1, 2000, to typically six months to a year
prior to the current date. The time series returned by MOVAS is spatially averaged over the
extent specified by a bounding box of lat-long coordinates. The data are temporally averaged
with a monthly time step.

2.4 Daymet
Data providing organization: Numerical Terradynamic Simulation Group (NTSG) at
University of Montana

Website: http://www.DAYMET.org/dataSelection.jsp

Daymet is a numerical model that provides daily surfaces of temperature, precipitation,
humidity, and radiation over large regions of complex terrain. Daymet was developed to create
fine resolution daily meteorological and climatological data necessary for plant growth model
inputs. The input to Daymet includes digital elevation model and observations of maximum
temperature, minimum temperature and precipitation from ground-based meteorological stations.

The data are available as surfaces or as numerical estimates at single points for the contiguous
United States at a daily time interval. Data before 01/01/1980 or after 12/31/2003 may not be
available.

2.5 North American Mesoscale model (NAM)
Data providing organization: Unidata program at the University Cooperation for Atmospheric
Research (UCAR)

Website: http://www.nco.ncep.noaa.gov/pmb/nwprod/analysis/

The NAM model makes predictions of climate variables four times daily (0:00 UTC, 6:00 UTC,
12:00 UTC and 18:00 UTC), with the predictions extending 84 hours into the future, at three
hour intervals. The spatial extent of the model is limited to North America. The spatial resolution
of the model grid is 12.19 km, and the grid dimensions are 614 x 428. The east and west
longitudinal extents of the grid (in decimal degrees) are -49.30897 and -133.49621. The north
and south latitude extents of the grid (in decimal degrees) are 57.35624 and 12.12367.

 8

http://www.daymet.org/dataSelection.jsp
http://www.nco.ncep.noaa.gov/pmb/nwprod/analysis/

2.6 Susquehanna River Basin Hydrologic Observatory System (SRBHOS)
Data providing organization: SRBHOS

Website: http://www.srbhos.org/

Susquehanna River Basin and Chesapeake Bay make up a CUAHSI WATERS combined test
bed project. The Susquehanna River Basin (SRB) is the largest tributary to the Chesapeake Bay
and the goal of these two projects (PIs are: Bill Ball, Kevin Dressler, Chris Duffy, Michael
Piasecki and Pat Reed) is to expand the ability to represent and predict the physical processes
associated with the nutrient loads reaching the Bay from the SRB. The SRBHOS group was
formed to provide an umbrella for scientists and researchers in the basin that are interested in
better understanding the environmental dynamics (including problems) of the basin and who
would benefit from the existence of a hydrologic observatory. The SRBHOS group to this date
has been extraordinarily successful in attracting funding from a variety of sources in order to
conduct work much in line with the goals of SRBHOS, the latest being the funding for a Critical
Zone observatory that will be situated within the SRBHOS basin.

The data provided comes from the "Real-Time Hydrologic Monitoring Data Network" site
established by researchers (Pat Reed, Chris Duffy and others) from Penn State University. The
RTH_Net field facility is investigating the dynamics of the terrestrial water and energy balance,
focusing on closing the water and energy budget across the Shaver's Creek watershed. The
research will attempt to find fundamental relationships of atmosphere-land-subsurface water and
energy dynamics. RTH_Net will extend the current sensor systems within the Penn State
Experimental Forest to resolve the roles of soil moisture and groundwater within the water cycle
through the use of Evaporation- Transpiration-Recharge (E-T-R) sensor arrays to fully capture
the essential space-time scales of terrestrial hydrology. RTH_Net will help identify how
thresholds, feedbacks, and nonlinearities in atmosphere-soil-stream-groundwater systems serve
to amplify low-frequency modes in runoff.

At the time of this writing, SRBHOS data are available for two test sites. The data cover nearly
30 surface and atmospheric variables, from about 1997 to the present, with about a 10-minute
time step.

 9

http://www.srbhos.org/

3.0 Ingesting Susquehanna River Basin Data into Excel with
HydroObjects
by Tim Whiteaker

3.1 Introduction
This chapter demonstrates the use of the HydroObjects Application Programming Interface
(API) to give users direct access to an academic investigator database from within Excel. This
database of Susquehanna River Basin observations is made available online via WaterOneFlow
web services, which the investigator has implemented. By conforming to WaterML and
WaterOneFlow standards, the investigator has made it possible for a number of applications,
such as HydroObjects, to directly work with the data.

The HydroObjects API is a .Net DLL that is compiled to also be COM compliant. This allows
the API to supplement other COM compliant software systems (Word, R, Python, etc.). The
example here shows an Excel spreadsheet that has been extended through the development of
Visual Basic for Applications (VBA) macros that use the HydroObjects API as a resource, in
order to download data from a certain type of WaterOneFlow web services.

These web services are built upon Observations Data Model (ODM) databases, which academic
investigators use to store and publish their data. CUAHSI provides a generic web service that is
meant to read from an ODM database, and so if an investigator organization uses this format,
then that organization can simply plug in their database to the generic ODM web service, and
then suddenly their data is accessible to the world in a standard manner.

The Excel macros in the spreadsheet that you are about to work with allow the user to get
metadata (e.g. site location, number of variables measured and their description) and time series
data for any variable measured at site by simply clicking buttons within Excel. The
HydroObjects provides a layer of abstraction between Excel and the web services, which allows
the steps demonstrated in this chapter to also be applicable for the other data sources within
WaterOneFlow.

3.2 Computer Requirements
• Working internet connection
• MS Excel
• HydroObjects
• ODMws.xls spreadsheet (included with HydroObjects installation)

3.3 Installation
Install HydroObjects and the Excel document using the following steps:

1. Download the HydroObjects setup file from

http://www.cuahsi.org/his/toolkit.html

 10

http://www.cuahsi.org/his/toolkit.html

The zip file contains several files used for setup, as well as a readme.txt file and an example
spreadsheet which makes use of HydroObjects.

You will use the spreadsheet in this exercise.

2. Unzip all the contents of the zip file, and double click on Setup.exe to run the setup file.
3. In the HydroObjects Setup Wizard, click Next to start the installation process.

4. Use the default installation folder for HydroObjects or choose your preferred location,
specify to install the program for “Everyone” or “Just me”, and click Next.

 11

5. In the Confirm Installation window, click Next to start the installation process. You
should see the progress bar as shown below:

6. After HydroObjects is successfully installed, click Close to finish the installation process.
7. You may now delete the setup files if you wish. But don’t delete ODMws.xls, as you

will use it in this exercise.

3.4 Downloading Susquehanna River Basin Data
To download Susquehanna River Basin data, double click on ODMws.xls to open the file in
Excel.

 12

ODMws.xls contains macros that use WaterOneFlow web services to download observations
data. (You may need to change your security settings in Excel to Medium in order to run
macros.) If prompted about enabling macros when opening the file, make sure you enable the
macros by choosing the “Enable Macros” option as shown below:

ODMws.xls contains six worksheets: Data Source, Sites, Variables, Site and Variable Info, Site
Catalog, and Time Series. These worksheets are described through the exercises below.

3.4.1 Specifying the Data Source
The Data Source worksheet provides general information about the spreadsheet, and lists some
sample WSDLs where academic investigators have already provided access to their data using
ODM and WaterOneFlow web services. To hook the spreadsheet up to a particular data source,
you provide the address to the WSDL for the web service which gives access to the data, the
name of the web service, and the name of the observation network within the web service.

Tip: A WSDL is an XML document that tells a client application what a web service can
do.

Here you will tell the spreadsheet to get data from the Susquehanna River Basin project.

1. On the Data Source worksheet, find the WSDL locations for example data sources at the
bottom of the visible data on the worksheet. Copy the WSDL for SRBHOS, and paste it
into the yellow cell entitled “WSDL of OD Web Service”.

 13

3.4.2 Getting a List of Sites
The Sites worksheet retrieves and lists all of the observations sites within the network.

1. Click the Sites worksheet to activate it.
2. Press the Click to Get Sites button. After a moment, a list of sites is returned, along with

some metadata about the sites.

This particular network only had five sites at the time of this writing. It is an experimental
network, but actually has quite a bit of observations data for each site.

3.4.3 Getting a List of Variables
Now you will get a list of variables measured within the observation network.

1. Click the Variables worksheet to activate it.

 14

2. Press the Click to Get Variables button. After a moment, a list of variables is returned,
along with some metadata about them.

Now that you know the sites and variables in the observation network, you are ready to query
information about specific sites and variables.

3.4.4 Obtaining Site and Variable Information
The Site and Variable Info worksheet provides buttons for discovering what variables are
measured at each site and brief metadata for each site and variable (eg. name, units, etc.). Each
station is identified by a station number assigned by the observation network. To get the
information on the variables measured at any station, you must enter the correct station number
in the yellow cell (G3) next to “Site Code”. Likewise, unique variable codes have been assigned
to each variable in the network.

The following steps illustrate how to download site and variable information.

1. On the Site and Variable Info worksheet, enter “SRBHOS:RTHNet” as the Site Code in
cell G3, and then click the Click to Get Site Info button.

In a moment, the spreadsheet will be automatically populated with information about the site and
variables measured at the site.

 15

When the Get Site Info button is clicked, an Excel macro uses HydroObjects to call the
WaterOneFlow web service located at the WSDL that you specified earlier to get the information
about the site. This information is then brought back to the Excel application (and this all
happens in just a few seconds!). The data flow sequence is the same for all the buttons that you
will use in ODMws.xls to get the data.

Once the list of variables measured at a particular station is available in the form of codes, you
may be interested in knowing what each code means and the measurement units for the variable.
To get information on a specific variable, enter the variable code in the yellow cell (K3) next to
Variable Code, press Enter and click the “Click to Get Variable Info” button.

2. On the Site and Variable Info worksheet, enter “SRBHOS:516” as the Variable Code in
cell K3, and then click the Click to Get Variable Info button.

After a moment, information about the variable appears in the spreadsheet.

Wow! Fast and easy access to remote data, right from my spreadsheet! But how does the magic
happen? Let’s now take a look at the code behind the button.

3. Click the Tools menu, then point to Macro, then click Visual Basic Editor.

4. In VBA, click the Tools menu, and then click References.

 16

Notice that a reference has already been made to HydroObjects in this spreadsheet. This enables
the spreadsheet to communicate with WaterOneFlow web services.

5. Close the References window.

6. In the Project window of VBA, double click the Site and Variable Info sheet to open the
code for that worksheet.

7. Scroll down to the procedure called GetVariableInfo and examine the code. This is the

procedure that’s called when you click the Click to Get Variable Info button.

This code is performing three majors tasks:

a. Read inputs from the worksheet (in this case, the Variable Code).

b. Use HydroObjects to call GetVariableInfo from WaterOneFlow.

c. Write the result to the spreadsheet.

 17

The key method being called in the code is InvokeCall, which requests information about the
variable of interest from WaterOneFlow. To use the method, you provide the WSDL for the web
service that you want to access, the name of the web service, the name of the method on the
service that you want to call, and an array of parameters that the method requires. In this case,
the WSDL is being read from the spreadsheet, in the text box that you filled out at the beginning
of this exercise.

The InvokeCall method returns whatever object is defined by the web method. In order to allow
any type of object to be returned, InvokeCall does not try to predict the properties and methods
of the returned objects. This means that the programmer must already know the properties of
WaterOneFlow objects before writing code (e.g., a variable object has a property called
variableName, which provides the name of the variable). The programmer new to
WaterOneFlow can use the code in this spreadsheet as a guide to accessing the properties of
WaterOneFlow objects.

8. Close the VBA window.

3.4.5 Getting the Site Catalog
The Site Catalog worksheet retrieves all sites in the observation network, as well as a catalog of
time series data for each site. Basically, the underlying macro calls GetSites to get a list of sites,
and then for each site, calls GetSiteInfo to get a list of variables measured at each site.

1. Click the Site Catalog worksheet to activate it.
2. Press the Click to Get Site Catalog button. After a moment, the site catalog appears in

the worksheet, and a message box indicates that the tool is finished.

3. Click OK to dismiss the message box.

 18

This can be a great place to start if you don’t know much about a given observation network.
Just click to download the site catalog, go get a cup of coffee, and when you come back, you can
peruse what’s available for each site in the network.

NOTE: Because so many calls to the web service are made, this can be a lengthy process,
especially for observation networks with a lot of sites. You can limit the number of sites
returned by inputting a number in the yellow cell next to “Max Sites to Get”.

3.4.6 Downloading Time Series Data
The Time Series worksheet provides access to the time series data. It requires four input
parameters: the site code, the variable code, a start data, and an end date. Enter the site code into
the yellow cell (G3) next to “Site Code”. Enter a variable code from the list in Site and Variable
Info worksheet in the yellow cell (G4) next to “Variable Code”, then enter a valid start date and
end date.

 19

Now let’s use the spreadsheet to download net radiation values from the SRBHOS database, for
a few days in January, 2007.

1. On the Time Series worksheet, enter “SRBHOS:RTHNet” as the Site Code.

2. Enter “SRBHOS:516” as the Variable Code. This is the code for net radiation.

3. Enter “1/1/2007” as the Start Date.

4. Enter “1/5/2007” as the End Date. These data occur at 10-minute intervals or less.
Therefore, the time series will be returned up to the beginning of 1/5/2007, which means
we’ll be getting back about four days’ worth of data (January 1st all the way through the
4th).

The cells should be filled in as shown below.

5. Click the Click to Get Values button.

After a moment, the spreadsheet is populated with the time series of net radiation.

After you push the Click to Get Values button, an Excel macro populates a WaterOneFlow time
series object from the ODM web service by using HydroObjects. The macro then reads the
datetimes and values from the object to fill in the spreadsheet as shown in the figure above.

3.5 Extending this Example
The HydroObjects API can be used in a COM compliant or .Net software package to perform
data access tasks like the ones demonstrated here. You can view the macro by selecting Tools -
-- Macros --- Visual Basic Editor from within Excel. The routines within the macros provide
examples for how to implement HydroObjects within other software packages.

Another way to extend this example is to add additional data sources to the spreadsheet.
Because the WaterOneFlow services follow a standard format, acquiring data from different
sources (from NWIS to EPA Storet, for example) requires little more than changing the URL to
the WSDL for the particular web service of interest. If you are familiar with Visual Basic and

 20

would like to customize this example, there are a number of resources on
http://water.sdsc.edu/wateroneflow to help in the process.

 21

http://water.sdsc.edu/wateroneflow

4.0 Ingesting STORET Data into Excel with HydroObjects
by Bora Beran

4.1 Introduction
This chapter demonstrates the use of the HydroObjects Application Programming Interface
(API) to allow users direct access to EPA’s STORET database of water quality information from
within Excel. The HydroObjects API is a .Net DLL that is compiled to also be COM compliant.
This allows the API to supplement other COM compliant software systems (Word, R, Python,
etc.). The example here shows an Excel spreadsheet that has been extended through the
development of Visual Basic for Applications (VBA) macros that use the HydroObjects API as a
resource, in order to download data from STORET. With these Excel macros, the user is able to
get metadata (e.g. site location, number of variables measured and their description) and time
series data for any variable measured at a STORET site by simply clicking buttons within Excel.
HydroObjects provides a layer of abstraction between Excel and the web services, which allows
the steps demonstrated in this chapter for STORET to also be applicable for the other data
sources within WaterOneFlow.

4.2 Computer Requirements
• Working internet connection
• MS Excel
• HydroObjects
• EPA.xls spreadsheet

4.3 Installation
If you haven’t already installed HydroObjects (as required for Chapter 3), follow the procedure
as in Chapter 3.

To download the EPA.xls spreadsheet, open a web browser and go to

ftp://ftp.crwr.utexas.edu/pub/outgoing/CUAHSI/HydroObjects

and click the EPA.xls link.

4.4 Downloading EPA STORET Data
To download EPA STORET data, double click on EPA.xls to open the file in Excel.

EPA.xls contains macros that use WaterOneFlow web services to download EPA STORET data.
(You may need to change your security settings in Excel to Medium in order to run macros.) If
prompted about enabling macros when opening the file, make sure you enable the macros by
choosing the “Enable Macros” option as shown below:

 22

ftp://ftp.crwr.utexas.edu/pub/outgoing/CUAHSI/HydroObjects

EPA.xls contains five worksheets: Data Source, Sites, Variable, Site and Variable Info, and Time
Series. The Data Source worksheet provides general information about the data, web site for
accessing the data and location of web services.

4.4.1 Obtaining Site and Variable Information
Sites
The Sites worksheet (shown below) provides an image of the site file (location of stations) for
the data, and information on the sites. There are about 275,000 stations for downloading EPA
data. For demonstration purposes, information on only eight random stations are included in the
Sites worksheet as shown below (To download data for sites not listed in the excel file, the user
must know the EPA STORET organization and station codes for the site of interest). Users can
use this worksheet to keep a list of stations they regularly visit.

 23

Variables
The Variables worksheet contains a list of EPA STORET variable codes, medium codes and
their descriptions.

Site and Variable Info
The Site and Variable Info worksheet (shown below) provides buttons for discovering what
variables are measured at each site and brief metadata for each variable (eg. name, units, etc.).
Each EPA station is identified by the collecting organization’s code followed by a station code.
To get the information on the variables measured at any station, you must enter the correct
station identifier in the yellow cell (G3) next to Site Code, separating organization code and
station code with a colon, as in MNPCA1:25-0016. The following screenshot shows an example
using a station managed by Florida Department of Environmental Protection (21FLPNS) with
station code 33030069.

Once you click the yellow cell next to Site Code, a drop-down menu appears with a list of EPA
STORET stations provided in the Sites worksheet. You can either choose one of the numbers
from this list or you can enter any other station number of interest.

The following steps illustrate how to download site and variable information.

1. On the Site and Variable Info worksheet, enter “21NC02WQ:J9930000” as the Site Code
in cell G3, and then click the Click to Get Site Info button. This site code is for a station
along the Neuse River in North Carolina.

After a few seconds, a list parameter codes for each variable measured at the station and the
period for which the data are available appears. To the right you can also see the number of
records for each parameter and a description of parameter codes. Above this list you can see the

 24

name of the station and its coordinates (Latitude and Longitude). Variable Codes include
measured parameter and measurement medium information separated by a dash. Codes and their
descriptions can be found in the Variables worksheet.

2. On the Site and Variable Info worksheet, enter “1-1” as the Variable Code in cell L3, and
then click the Click to Get Variable Info button. Make sure medium information is not
missing. In this example “-1” indicates that medium is “Water”.

After a moment, information about the variable appears in the spreadsheet.

4.4.2 Downloading Time Series Data
The Time Series worksheet provides access to the time series data. It requires four input
parameters: the site code, the variable code, a start data, and an end date. Enter the site code into
the yellow cell (G3) next to “Site Code”. You have the option of choosing the site code from the
drop-down menu or entering a valid EPA organization/station code. Enter a variable code from
the list in Site and Variable Info worksheet in the yellow cell (G4) next to “Variable Code”, then
enter a valid start date and end date.

Now let’s use the spreadsheet to download pH values for the site that we queried above.

1. On the Time Series worksheet, enter “21NC02WQ:J9930000” as the Site Code.

2. Enter “1-1” as the Variable Code.

3. Enter “1/1/1995” as the Start Date.

4. Enter “1/30/2006” as the End Date.

The cells should be filled in as shown below.

 25

5. Click the Click to Get Values button.

After a moment, the spreadsheet is populated with the time series of pH values.

In addition to the time series data, to the right of the data you will find some information about
the time series, including units and date/time you downloaded it.

NOTE: The time series values are not in chronological order, which reflects how they are
returned from the EPA website. WaterOneFlow services attempt to modify the data they retrieve
as little as possible, in order to preserve the integrity of the data.

Congratulations! You have just used Excel and HydroObjects to download water quality data
from EPA’s STORET database.

 26

5.0 Ingesting Weather and Streamflow Data into ArcGIS
by Ernest To

5.1 Introduction
This chapter demonstrates the ingestion of meteorological and streamflow data from Daymet,
NAM and NWIS in ArcGIS using a custom ArcMap tool called Weather Downloader.

Weather Downloader is a very useful tool for downloading time series data needed to describe
the hydrology of a given geographical area. It utilizes CUAHSI web services to access
meteorological and streamflow data stored in public data repositories. Weather Downloader’s
user interface allows the user to extract data by specifying the following inputs:

1) a point feature class in ArcGIS that contains locations of interest;
2) variables of interest (e.g. precipitation, temperature), and;
3) time periods of interest.

 27

When executed, Weather Downloader cycles through each location in the point feature class,
downloads the desired data through CUAHSI’s web services and writes them to the TimeSeries
table of an Arc Hydro geodatabase specified by the user.

Arc Hydro is an ArcGIS data model which facilitates preprocessing and integration of
hydrological geospatial and temporal data with hydrologic and hydraulic simulation models. For
more information on Arc Hydro, see:

http://www.crwr.utexas.edu/giswr/hydro/index.html

5.2 Computer and Skill Requirements
To complete this exercise, your computer must meet the following requirements:

• Windows 2000 or above
• ESRI ArcGIS 9.1 or above
• Microsoft .NET Framework version 2.0 (x86) (this is available at:

http://www.microsoft.com/downloads/details.aspx?FamilyID=0856eacb-4362-4b0d-
8edd-aab15c5e04f5&DisplayLang=en)

• Internet connection

This exercise assumes that you have some familiarity with the ArcGIS 9.1 software environment.

5.3 Installation
To install the Weather Downloader tool:

1. Download the Setup file from the following link:

ftp://ftp.crwr.utexas.edu/pub/outgoing/CUAHSI\HIS_workbook/20070720/InstallationFiles/Wea
therDownloaderSetup_20070629.zip

2. After download, unzip the file on a local drive (contents shown below), and double click
on Setup.Exe to run the setup file.

3. In the Weather Downloader Setup Wizard, click Next to start the installation process.

 28

http://www.crwr.utexas.edu/giswr/hydro/index.html
http://www.microsoft.com/downloads/details.aspx?FamilyID=0856eacb-4362-4b0d-8edd-aab15c5e04f5&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=0856eacb-4362-4b0d-8edd-aab15c5e04f5&DisplayLang=en
ftp://ftp.crwr.utexas.edu/pub/outgoing/CUAHSI/HIS_workbook/20070720/InstallationFiles/WeatherDownloaderSetup_20070629.zip
ftp://ftp.crwr.utexas.edu/pub/outgoing/CUAHSI/HIS_workbook/20070720/InstallationFiles/WeatherDownloaderSetup_20070629.zip

4. Use the default installation folder for Weather Downloader or choose your preferred
location, specify to install the program for “Everyone” or “Just Me”, and click Next.

5. Click Next to get the Confirm Installation Window, and then click Next to start the
installation process. You should see the progress bar as shown below:

 29

6. After the Weather Downloader is successfully installed, click Close to finish the weather
downloader installation process.

Besides installing the weather downloader, the installation process also adds two files
(weather_downloader.mxd and weather_downloader.mdb) in C:\Program
Files\CUAHSI\Weather Downloader (or any other location specified during the set up) that you
will use in this exercise.

5.4 Retrieving Data with Weather Downloader
In this exercise, you will use Weather Downloader to retrieve climate and streamflow time series
data for the San Marcos basin in Texas.

5.4.1 Opening the Map

1. Double click on weather_downloader.mxd to open the ArcMap document as shown
below. (The file is located in the directory where you installed Weather Downloader.)

 30

This map shows the San Marcos watershed which is located between the cities of Austin and San
Antonio in Texas. The green polygons are the catchments and the orange points are their
centroids. The purple and white symbols are USGS stream gages. The black triangles are USGS
groundwater well stations.

2. Open the attribute table for USGS_Gages_SanMarcos. The table is shown below.

From the table, we see that this feature class contains five points representing USGS stream
gages. The values in the field HydroCode are the unique stream gage IDs assigned to each gage
by the USGS. These are public identifiers by which these features may be identified in any
system. The field HydroID stores the unique ID of these features in the geodatabase. The
HydroID links each stream gage to other features in the geodatabase, such as time series records
which you will download in this exercise.

5.4.2 Adding Weather Downloader to ArcMap
1. From ArcMap’s standard menu bar, click Tools, and then click Customize….
2. Click on the Commands tab, and then click on Add from file….

 31

3. Navigate to the directory: “C:\Program Files\CUAHSI\Weather Downloader” (or
wherever you installed Weather Downloader on the local drive).

4. Select WeatherDownloader.tlb and click Open. If the installation is successful, the dialog
box shown below should appear to confirm that the tool has been successfully added.

 32

(If you see a message saying “No new objects” or something similar, check to see that you have
administrator privileges on your computer. You must be able to register DLLs in order to add
Weather Downloader to ArcMap.)

5. Click OK, and then drag Weather Downloader tool (see below) from the customize
window to anywhere in the ArcMap toolbar to create a new button named Weather
Downloader. Then close the customize window.

The weather downloader tool will appear as a button in the ArcMap toolbar as shown below:

5.4.3 Downloading Weather Data
1. Click on the Weather Downloader button to get the form shown below.

 33

The form contains several input options, including four tabs for retrieving different types of data:
Atmospheric, Surface, Subsurface, and Custom. The first three tabs are pre-programmed to
work with a specific data provider and web service. The last tab, Custom, allows you to enter
the WSDL of any other WaterOneFlow web service that wasn’t already included with Weather
Downloader. This is useful when a new service is created after the Weather Downloader
program was last compiled.

Selecting a point layer

 34

2. In the top left combo box (located below “Please select the point feature class”), select
the feature class that contains the point locations where you want weather data. For this
exercise, select USGS_gages_SanMarcos.

Selecting identifier field in the point layer

3. In the second combo box, select the identifier field that will link the feature class to the
time series data. By default, the tool selects HydroID in the attribute table of the input
layer as the identifier field. If the HydroID field is unavailable, the combo box defaults
to the first integer field in the attribute table. For this exercise, make sure HydroID is
chosen in this combo box.

Selecting data output location

4. By default, the data output location is set to look for a geodatabase named
“weather_downloader.mdb” that resides in the same directory as the ArcMap document.
If a different geodatabase is desired, the user can click on the Browse button and navigate
to the location of the desired geodatabase. For this exercise, leave the default of
C:\Program Files\CUAHSI\Weather Downloader\weather_downloader.mdb, or wherever
you installed Weather Downloader.

Selecting variables

5. Select the variables that you want to download by clicking on the check boxes next to the
variable descriptions. First let’s get some atmospheric data. Make sure the Atmospheric
tab is selected.

6. In the frame for Historical Data, check the box for “4 - Precipitation (cm)”.

7. Now click the Surface tab. In the frame for Streamflow Data, check the box for “9 –
Daily Streamflow Data (cfs)”

 35

Please note that for Streamflow data, NWIS uses the USGS gage number (instead of latitude and
longitude) to locate the point of interest. Recall that these gage numbers are stored in the
HydroCode field of our USGS_Gages_SanMarcos feature class.

8. In the associated combo box on the Weather Downloader form, in the frame for
Streamflow Data (see below), select HydroCode as the USGS gage number field.

Specifying period of interest

You can specify the start dates and end dates for the Daymet and USGS stations by typing into
the Start date and End date boxes,

You can type in any date range. However, the web services will only return data that are within
the period of record for the location of interest.

9. For this exercise, leave the default start and end dates unchanged (start date = 01/01/1990
and end date = 12/31/2003) for Daymet and NWIS.

For UNIDATA, the tool is set to download the most recent forecast results from the NCEP North
American Mesoscale Model (12km). Because forecasts are generated for a fixed period of time
into the future (i.e. 84 hours), the web service is “hard-wired” to download all the data in this
period. The North American Mesoscale model is run every six hours at 00:00, 06:00, 12:00,
18:00 Greenwich Mean Time with forecasts being made at 3 hour-intervals into the next 84
hours (i.e. 3.5 days).

Replace/Append to Timeseries table

10. The last two radio buttons in the form let you choose between overwriting existing data
in the TimeSeries table (Replace contents of TimeSeries table), or keeping the existing
data in the TimeSeries table (Append to contents of TimeSeries table). For this exercise,
select the Replace contents of TimeSeries table option.

 36

The completed form should look like the one below for the Atmospheric tab.

For the Surface tab, the form should look like the one below.

 37

Running the tool

11. Once all the inputs are provided, click OK to run the tool.

The tool highlights the points for which the data are being downloaded as shown below. Since
you are downloading two types of data, each point will be highlighted twice.

 38

Besides highlighting the points, the progress of the tool is shown in the status bar in ArcMap at
the bottom-left corner of the ArcMap window. Please note that the tool may take a few minutes
to complete the data download.

Once the download is complete, the tool will display the time taken in a dialog box as shown
below.

12. Click OK to continue.

Inspecting the results

The weather downloader tool downloads the data in Arc Hydro time series format.

13. In the ArcMap table of contents (left window), select the source tab and then select the
TimeSeries table as shown below.

 39

12. Right click on TimeSeries table, and then click Open to view the contents of the table as
shown below:

The time values are stored in the TSDateTime field, and the corresponding data are stored in the
TSValue field. The TSTypeID field stores variable codes which can be looked up in the TSType
table for more information such as units, time interval, etc.

You can export the attribute table into a .dbf file and do some fancy plots with it. For instance
the following are the hyetograph and hydrograph of USGS gage 08170500 (San Marcos River at
San Marcos) that are plotted from the data you have just downloaded. Notice how well the
major storm events in the graphs line-up with each other despite the different sources of data.
Pretty amazing, isn’t it?

 40

5.5 Downloading Data from Other Web Services
Weather Downloader allows the user to utilize other web services in CUAHSI’s arsenal through
the “Other Web Services” feature. Some of these web services include:

1) NWIS Instantaneous Irregular Data (Field Measurements; Water Quality)
2) NWIS Unit Values (Real Time) Data
3) NWIS Ground Water Data
4) MODIS (Moderate Resolution Imaging Spectroradiometer) data

This feature allows the invocation of web services in a similar manner to programming in
VB.NET. The user has to choose or type the WSDL (Web Service Description Language) of the

 41

desired web service, the name of the desired web method, and the input parameters for the
method into a form and then invoke the web service through Weather Downloader.

This basic form of input provides versatility and allows the use of web services not yet
incorporated into the main interface of Weather Downloader. The limitation of this feature is
that it works on one location at a time and does not cycle through a group of points as with
Daymet, NAM and NWIS daily values web services.

1. To access the “Other Web Services” feature, open Weather Downloader, and click the
Custom tab.

2. Place a check next to “999 – Other WaterML webservices”. Be sure to uncheck other
data sources that you may have already downloaded on other tabs (i.e., “4” and “9”.)

3. For the WSDL, select the one for ODM_BIO in Texas. This web service provides
biological data from Texas State University.

http://www2.tnris.state.tx.us/TexasHIS/ODM_BIO/cuahsi_1_0.asmx?WSDL

4. For the web service name, enter “WaterOneFlow”.
5. For the web method, enter “GetValuesObject”.

6. Next, you would specify the location (site code), variable, and period of record for the
time series you want to retrieve. Some default were automatically placed in these text
boxes when you selected the WSDL for ODM_BIO, so just accept the defaults.

7. In the Replace/Append option at the very bottom of the form, choose the Append to
contents of TimeSeries table option, and then click OK.

 42

http://www2.tnris.state.tx.us/TexasHIS/ODM_BIO/cuahsi_1_0.asmx?WSDL

8. Once download is complete, open up the TimeSeries table in the geodatabase and inspect
the values. What you’ll see are counts for the selected species at each time step.

This concludes the Weather Downloader demonstration.

 43

6.0 Plotting MODIS Data with Matlab
by David Tarboton

6.1 Introduction
Matlab users can take advantage of web service methods by using the createClassFromWsdl
function. This function creates a Matlab class based on a WSDL. The URL to the WSDL is
provided to the function when the function is called. This chapter demonstrates how to call a
CUASHI web service from Matlab, parse the result, and plot a time series graph. In the exercise,
you will write an M-file that creates a plot of the Cloud Optical Thickness Water Phase variable
from NASA’s MODIS database of remote sensing data.

6.2 Computer and Skill Requirements
To complete this exercise, your computer must meet the following requirements:

• Working Internet connection
• Matlab version 7 (or greater) software

This exercise assumes that you have some familiarity with the following software environments:

• Matlab version 7

NOTE: The source code for the parse_xml M-file used in this exercise is located in Appendix A.
The source code for the MODISPlot_xml M-file is located in Appendix B.

6.3 Procedure
WaterOneFlow web services return data either in XML or Object form. XML is a very useful
format for web services, because it is platform independent and self-describing. Yet while
Matlab can create a class from a WSDL, it does not contain inherent classes for working with
XML. Therefore, we’ll begin the exercise by creating an M-file called parse_xml that will serve
as our Matlab XML parser.

6.3.1 Setting up the XML Parser
1. Start Matlab.
2. Set the current directory to the location where you wish to perform the work.

3. If you already have a copy of the parse_xml.m file, copy the file to the working directory
and go to the section entitled Retrieving MODIS Data. Otherwise, continue to the next
step.

4. In the Command Window, enter the command

 44

edit parse_xml

If you get the following prompt, click Yes to create the file parse_xml.

5. In the Matlab editor, enter the code for parse_xml as found in Appendix A. If you are
viewing an electronic copy of this document, try copying and pasting the code.

6. In the Matlab editor, click the File menu, and then click Save.

You should now see the parse_xml.m file in Matlab’s Current Directory window.

6.3.2 Retrieving MODIS Data
With the XML parser in place, the next step is to build an M-file for retrieving MODIS data.

NOTE: Instead of entering code as shown below, you could copy the code from Appendix B, or
simply refer to MODISPlot_xml.m if you were provided a copy of the finished file with this
document.

1. In the Command Window, enter the command

edit MODISPlot_xml

2. In the Matlab editor, enter the following lines of code. This code creates an instance of
the MODIS class from the WSDL.

% Create class.
wsdl='http://water.sdsc.edu/waterOneFlow/MODIS/Service.asmx?WSDL';
createClassFromWsdl(wsdl);

% This creates an instance of the class.
svsMODIS = MODIS;

 45

3. In the Matlab editor, enter the following lines of code. This code sets the parameters for
calling the GetValues method, and then calls GetValues. In this case, the parameters
instruct the MODIS class to retrieve Cloud Optical Thickness Water Phase values for
2004, spatially averaged over an area that roughly covers Travis County in Texas. The
plotArea parameter indicates that the values should include areas both over the land
surface and the oceans. You will find a list of valid codes and keywords for retrieving
MODIS data at:

http://water.sdsc.edu/waterOneFlow/MODIS/Service.asmx

% Specify input parameters.
w='-98.2' % West longitude.
s='30' % South latitude.
e='-97.3' % East longitude.
n='30.7' % North latitude.
location=['GEOM:BOX(',w,' ',s,',',e,' ',n,')']
% Variable Code 11 = Cloud Optical Thickness Water Phase.
variableCode='MODIS:11/plotarea=land'
startDate='2004-01-01'
endDate='2004-12-01'

% Call the GetValues function to get the time series data.
xmlValues=GetValues(svsMODIS,location,variableCode, ...
 startDate,endDate,'')

4. In the Matlab editor, click the File menu, and then click Save.
5. In the Matlab Command Window, enter the command

MODISPlot_xml

This command runs the code in the MODISPlot_xml.m file. When the code runs, you will see
the values that have been set for the parameters to the GetValues call, followed by the XML
String returned from the web service that is saved in the variable called xmlValues.

Alternatively you can run each of the commands above individually in sequence by highlighting
them and pressing F9 in the Matlab editing environment.

 46

http://water.sdsc.edu/waterOneFlow/MODIS/Service.asmx

To get an understanding of the structure of the XML output we will copy it to a file and view it
using an XML viewer such as Internet Explorer.

6. Copy the XML output (beginning with <timeSeriesResponse and ending with
</timeSeriesResponse>) and paste the text into a new text document using a text
editor.

7. Save the document as MODISExample.xml, and close the text editor.
8. Open MODISExample.xml with an XML viewer.

Below is a screenshot of the document, as viewed in Internet Explorer. Some of the XML
elements have been collapsed for readability.

Notice the hierarchy of data in the XML. Understanding the hierarchy is crucial to navigating
the XML in Matlab. The parse_xml utility converts an XML string into a Matlab structure, the
contents of which can be accessed through parent/child relationships. For example, in
MODISExample.xml, the name of the time series variable is stored in the variableName tag.
This tag is a child of the variable tag, which is a child of the timeSeries tag, which is a child
of the timeSeriesResponse tag, which is a child of the XML document itself. In other words,
the variableName tag is four levels down. The order of child tags in the same “generation” is
also important. The variable tag is the second child of the timeSeries tag. Therefore, the
complete path to the variableName tag can be summarized as follows:

 47

a) Get the first child (there is always only one) of the XML document. (This returns
timeSeriesResponse)

b) Get the second child of this element. (This returns timeSeries)
c) Get the second child of this element. (This returns variable)
d) Get the second child of this element. (This returns variableName)

This logic will be used to retrieve information from the Matlab structure created from this XML
string.

9. Close the XML file.
10. In the Matlab editor for MODISPlot_xml, enter the following lines of code. This code

calls the parse_xml function which feeds the XML string to the parser, and returns a
Matlab structure object created from the XML string.

% Parse the XML string.
structValues=parse_xml(xmlValues);

Execute just this code by highlighting it and pressing F9. Examine the structure structValues
that is returned, to see that it contains the complete content of the XML string in a series of
nested structures. For example, if you type:

structValues

in the Matlab command window, you will see the following.

This indicates that the structure returned contains one child that is itself a structure named child.
To drill down further into this structure, the logic of the XML needs to be followed. For
example

structValues.child.child(2).child(2).child(2)

returns the following

 48

This displays the VARIABLENAME tag which is the second child of the element variable, which
is the second child of the element timeSeries which is the second child of the element
timeSeriesResponse which is the only child element in the structure.

11. In the Matlab editor for MODISPlot_xml, enter then execute following lines of code.
The display functions write the name and units for the variable to the Matlab Command
Window.

% Report the name and units of the chosen variable.
display(structValues.child.child(2).child(2).child(2).value)
display(structValues.child.child(2).child(2).child(3).value)

12. In the Matlab editor for MODISPlot_xml, enter the following lines of code. This code
retrieves the time series records from the structure then loops through all the records and
stores the datetimes and values in an array. The datenum function converts the datetimes
to numeric format, which aids in plotting the data.

% Get the <value> tags.
Recs=structValues.child.child(2).child(3).child;
[d1,d2]=size(Recs)

% Build arrays of datetimes and values.
for i=1:d2
 % Reformat date to that Matlab can understand it.
 datetime=Recs(i).attribs(1).value;
 year=datetime(1:4);
 month=datetime(6:7);
 day=datetime(9:10);
 datetime=[month,'/',day,'/',year];
 dn(i)=datenum(datetime); % Convert to numeric date.
 % Read the time series value.
 values(i)=str2double(Recs(i).value);
end

13. In the Matlab editor for MODISPlot_xml, enter the following lines of code. This code
sets up the axis for plotting, and then plots the data using the Matlab plot function.

% Plot the graph.
plot(dn,values);datetick;
grid on % Turn on grid lines for this plot.

14. In the Matlab editor, click the File menu, and then click Save.
15. In the Matlab Command Window, enter the command

MODISPlot_xml

After a moment, you’ll see the variable information appear in the Command Window, and then a
graph will appear.

 49

You can edit the plot, put legend and axes names by going to the Edit menu in Figure 1 plot
shown above.

In this exercise, you have learned how to call web services from within Matlab and plot MODIS
data. This concludes the exercise.

 50

7.0 Ingesting NWIS Data using VB.Net
by Thiha Min and Tim Whiteaker

7.1 Introduction
Using web services is a breeze with Visual Studio. This chapter demonstrates how to call a web
service with Visual Studio .Net 2005 and the Visual Basic .Net programming language.

In this exercise, you will create a VB.Net Windows application that uses the NWIS Unit Values
web service to compute average streamflow over the past few days at the Colorado River at
Austin, TX. The NWIS Unit Values web service returns real-time data for roughly the past 31
days. These data typically are recorded at 15-minute intervals.

7.2 Computer and Skill Requirements
To complete this exercise, your computer must meet the following requirements:

• Working Internet connection
• Visual Studio .Net 2005 software

This exercise assumes that you have some familiarity with the following software environments:

• Visual Studio .Net 2005

7.3 Accessing NWIS Data with a VB.Net Windows Application
In this exercise, you will create a windows application with one main window that allows the
user to click to see what the average streamflow over the past few days is at the Colorado River
at Austin, TX. The application lets the user specify the number of days for which data should be
retrieved (up to 30 days back). The application then asks the NWIS Unit Values web service for
streamflow values, and then computes the average of the returned values.

7.3.1 Setting up the Project
1. Start Visual Studio 2005 (Click on Start --- All Programs --- Microsoft Visual Studio

2005 --- Microsoft Visual Studio 2005).
2. Click the File menu, then click New Project….

3. In the New Project window, set the following properties:
a. Choose Visual Basic --- Windows from Project Types.
b. Select Windows Application from Templates.
c. Type “AustinStreamflow” as the Name.

 51

d. Click OK.

A new project will open with a default form called Form1.

7.3.2 Creating the Web Reference
This project will make use of the NWIS Unit Values web service to retrieve streamflow values
from the USGS stream gage on the Colorado River at Austin. The web service becomes
available to the project after making a web reference to the service.

1. Click the Project menu, then click Add Web Reference…

 52

2. In the Add Web Reference window (next to URL:), type in the following URL:

http://water.sdsc.edu/waterOneFlow/NWIS/UnitValues.asmx

3. Click Go. Visual Studio will navigate to the URL and verify that a web service is
present.

 53

4. Change the Web reference name (from default edu.sdsc.water) to NWISUnitValues. This
is the name by which you will reference the NWIS web service in your code.

5. Click Add Reference.

The NWIS web service is now available for use within your project.

7.3.3 Building the User Interface
Now that you’ve set up the project, you’ll build the user interface by adding controls to the form.
Later, you’ll add the code behind those controls which will perform the work.

1. Right click on Form1 and click Properties.

 54

2. Change the Text property of the form to “Colorado River Streamflow”. This changes the
name that appears in the title bar of the form.

3. Add two labels, one combo box, and one button to the form, at roughly the same
positions as shown in the figure below.

 55

4. In a manner similar to setting the Text property of the form, set the properties of the
controls as shown below.

Control Property Value
Label1 Text This program computes the average streamflow in the

Colorado River at Austin, TX, over the past few days. Specify
the number of days to include in the computation with the drop
down box below.

 AutoSize False
Label2 Text Number of recent days to include in average:
ComboBox1 DropDownStyle DropDownList
Button1 (Name) btnCalculate
 Text Calculate Average Streamflow

The form should now look similar to the one below.

 56

Now you will add the choice of 1 to 30 days to the combo box.

5. Click the properties for ComboBox1, and then select the Items property. Click the
ellipsis next to (Collection).

6. Add the numbers 1 through 30 to the String Collection Editor window. This allows the
user to select between 1 and 30 days to include in the computation of average streamflow.

 57

7. Click OK to close the String Collection Editor window.

The design of the form is now complete. Next you will add code to make the form perform
useful work.

7.3.4 Writing the Code
First you must set the default value of the drop down box. Let’s use 30 as the default.

1. Double click the form (be sure and not to click on any of the controls that you have added
to the form.) This opens the code editor, and creates stub code that will be run when the
form opens.

2. Add the following code to the Form1_Load procedure.

 ComboBox1.SelectedItem = ComboBox1.Items.Item(29)

The result is shown in the screenshot below.

 58

In the code above, you are setting the selected item in the combo box to be the 30th item (which
happens to be the number 30). Indices in VB.Net begin with zero, not one. So the first item in
the combo box has an index of zero, while the last item has an index of 29 in this case.

3. At the top of the code editor, click the Form1.vb [Design] tab.

This shows the form and the controls that you have placed on it. This is a convenient view for
choosing a specific control to write code for. Now you’ll add code to the button to compute
average streamflow.

4. Double click the Calculate Average Streamflow button to open the code editor and
automatically create stub code for the Click event for that button.

5. Add the following code to the btnCalculate_Click procedure.

 ''
 ' Set initial parameters.
 ''

 ' Set the siteCode for our gage of interest.
 Dim location As String = "NWIS:08158000"
 ' Set the variableCode for streamflow.
 Dim variable As String = "NWIS:00060"
 ' Set start and end date.
 Dim startDate, endDate As String
 Dim tmpDate As Date
 endDate = Format(Now, "yyyy-MM-dd")
 tmpDate = Now.AddDays(-1 * ComboBox1.SelectedItem + 1)
 startDate = Format(tmpDate, "yyyy-MM-dd")

 ''
 ' Call the web service.
 ''

 Dim ws As New NWISUnitValues.NWISUnitValues
 Dim tsResponse As NWISUnitValues.TimeSeriesResponseType
 tsResponse = ws.GetValuesObject(location, variable, _
 startDate, endDate, "")

 59

 ''
 ' Process the results.
 ''

 Dim vals As NWISUnitValues.TsValuesSingleVariableType
 vals = tsResponse.timeSeries.values
 If vals.count = 0 Then
 MsgBox("No values returned")
 Exit Sub
 End If

 Dim avg As Double = 0

 For i As Integer = 0 To vals.count - 1
 avg += vals.value(i).Value
 Next

 avg = avg / vals.count
 MsgBox("The average streamflow is " & _
 FormatNumber(avg, 1) & " cfs")

In the code above, you are first preparing the inputs to feed the web service. The tricky part of
this is formatting the dates to “yyyy-MM-dd” format (e.g., 2006-12-31), which is what the web
service is expecting. Another trick is calculating the start date by adding “negative” days to the
current date in the line:

tmpDate = Now.AddDays(-1 * ComboBox1.SelectedItem + 1)

Next you are creating a new instance of the NWIS Unit Values web service, and calling the
GetValuesObject method from the service with the date inputs from the user. This method
returns an Object with the data retrieved from the web service.

Next, with the results from the GetValuesObject call, you are computing the average streamflow
from the values returned, and then showing a message box to report the result.

7.3.5 Running the Code
The project is now ready to run.

1. Press F5 on your keyboard to run it.
2. Click the Calculate Average Streamflow button.

After a minute or two, a message box appears showing the average streamflow over the past 30
days. Note that your value may be different than the value in the screenshot below, since this
exercise was created on another day than the current day.

 60

3. Close the form when you are finished.

You have the exercise and have learned how to call a web service from Visual Studio .Net 2005.
From this point, you could build the solution as an executable file by pressing Ctrl-Shift-B on
your keyboard. See your Visual Studio help for more information about building solutions.

 61

8.0 Ingesting NWIS Data Using Java
by David Valentine

In this chapter you will build a Java class that accesses the NWIS Daily Values web service to
obtain daily streamflow values for Big Rock Creek near Valyermo, California, for the year 2001.
The class will output the site code and site name for this location, as read from the web service,
as well as the time series of streamflow values.

8.1 Computer and Skill Requirements
To complete this exercise, your computer must meet the following requirements:

• Working Internet connection
• Java SE 5: download from http://java.sun.com/
• NetBeans IDE 5.5: download from http://www.netbeans.org

This exercise assumes that you have some familiarity with general programming concepts and
Java.

NOTE: The source code for the nwis.java class created in this exercise is located in Appendix C.

8.2 Procedure

8.2.1 Creating a New Project
First, you will create a new Java project.

1. Start NetBeans IDE.
2. Click the File menu, and then click New Project...

3. In the New Project dialog, select General in the Categories pane. In the Projects pane,
select Java Class Library.

 62

http://java.sun.com/
http://www.netbeans.org/

4. Click Next.
5. In the New Java Class Library dialog, enter “NwisOneFlow” as the Project Name.
6. Enter the path in which you want the project folder to be created in Project Location. The

IDE will create a subfolder at that location called “NwisOneFlow”, which will contain all
files used in the project.

7. Click Finish.

8.2.2 Creating a Web Service Client
With the project set up, you will now create a client for the NWIS web service.

1. In the Projects window, right click on NwisOneFlow, point to New, and then click Web
Service Client…

 63

2. In the New Web Service Client dialog, enter
“http://water.sdsc.edu/wateroneflow/NWIS/DailyValues.asmx?WSDL” as the WSDL
URL.

3. For the Package, enter “org.cuashi.wof.ws.nwis”
4. For the JAX Version, select JAX-WS.

5. Click Finish to compile the web service client class.

 64

8.2.3 Creating a Class to Consume the Web Service
In this section you will create a new java class, wof.nwis, that accesses the web service client
you just created. The class will download a time series of daily streamflow values at Big Rock
Creek near Valyermo, California, for the year 2001. The site code for this location is 10263500,
and the variable code for streamflow is 00060. You will hard code both of these values into the
class. You will also hard code the time span (the year 2001). In a more robust application, you
would let the user supply these parameters. The class will output the name of the site, its site
code, and the time series of values.

1. In the Projects window, right click on the NwisOneFlow project, point to New, and then
click Java Class…

2. In the New Java Class dialog, enter “nwis” as the Class Name, and “wof” as the Package.

3. Click Finish.

Now you will add a “main” procedure, which is the default procedure that will run when the
class is invoked. It is within this procedure that you will eventually add the code to retrieve the
time series values.

4. At the end of the source code for the nwis class, enter the following code.

 65

 public static void main(String[] args){
 }

The screenshot below shows the result.

Now you will create the code for calling the web service. Fortunately, the IDE can create most
of the code for you.

5. Right click within the code for the main method, point to Web Service Client Resources,
and then click Call Web Service Operation.

6. In the Select Operations to Invoke dialog, select GetValuesObject, and click OK.

 66

After you click OK, the IDE generates code for calling the GetValuesObject method from the
NWIS web service. The IDE creates variables (e.g., location) for storing the parameters that will
be sent to the web service, but leaves them empty for you to fill in later. A screenshot from the
code editor is shown below.

When executed, the above code creates a web service, gets an instance, and then calls
GetValuesObject. Now you will hard code the parameters for our site of interest. Remember,
you are hard coding these parameters for this simple example application, but a more robust
application would read these parameters as inputs from the user.

7. Fill in the parameters for calling the web method.

 java.lang.String location = "NWIS:10263500";
 java.lang.String variable = "NIWS:00060";
 java.lang.String startDate = "2001-01-01";
 java.lang.String endDate = "2001-12-31";
 java.lang.String authToken = "";

A screenshot from the code editor is shown below.

 67

Now you will create variables to store the site code and name as read from the web service.

8. In the main procedure, above the try statement, add the following lines of code.

 String siteCode = null;
 String siteName = null;

A screenshot of the code editor is shown below.

To output the datetimes and values in the time series, you will use a List object.

9. Below the package declaration, add an import statement for the List library.

import java.util.List;

A screenshot from the code editor is shown below.

 68

You will now tell the IDE to output the site code and site name to the Output window of the IDE.

10. At the end of the try statement, replace the line that begins with “System.out.println” with
the following lines of code, in order to output the site information:

 org.cuashi.wof.ws.nwis.SiteInfoType sit =
 (org.cuashi.wof.ws.nwis.SiteInfoType)

result.getTimeSeries().getSourceInfo();
 siteCode = sit.getSiteCode().get(0).getValue();
 siteName = sit.getSiteName();

 System.out.println("siteCode = "+siteCode);
 System.out.println("siteName = "+siteName);

A screenshot from the code editor is shown below.

Some notes on the above code logic: You are working with objects, so you need to do some type
casting in order to get the correct object. The line below takes a sourceInfo type and casts it to a
siteInfo type.

 org.cuashi.wof.ws.nwis.SiteInfoType sit =
 (org.cuashi.wof.ws.nwis.SiteInfoType)

result.getTimeSeries().getSourceInfo();

At present, there are two possible sourceInfo types: siteInfoType, and dataSetInfoType. If we
were writing a more complete generic parser, we would use getClass().getName(), and cast based
on the object type.

Finally, you will add code to output the time series values.

11. Add the flowing code after the last “System.out.println” line that you just added.

 69

System.out.format("%20s %10s","DateTime","Value");
System.out.println();
List<org.cuashi.wof.ws.nwis.ValueSingleVariable> valuesList =
 result.getTimeSeries().getValues().getValue();
for (org.cuashi.wof.ws.nwis.ValueSingleVariable value : valuesList) {
 System.out.format("%20s %10.4f",
 value.getDateTime().toString(),value.getValue());
 System.out.println();
}

A screenshot from the code editor is shown below.

In the above code, we use a List and a for loop, which are features of java 1.5 and above. We
loop through the set of values, and output formatted strings.

When finished, the code for the main method should look as follows. Note that text for long
lines is wrapped.

 public static void main(String[] args){
 String siteCode = null;
 String siteName = null;

 try { // Call Web Service Operation
 org.cuashi.wof.ws.nwis.NWISDailyValues service =
 new org.cuashi.wof.ws.nwis.NWISDailyValues();
 org.cuashi.wof.ws.nwis.WaterOneFlow port =
 service.getWaterOneFlow();
 // TODO initialize WS operation arguments here
 java.lang.String location = "NWIS:10263500";
 java.lang.String variable = "NIWS:00060";
 java.lang.String startDate = "2001-01-01";
 java.lang.String endDate = "2001-12-31";
 java.lang.String authToken = "";
 // TODO process result here
 org.cuashi.wof.ws.nwis.TimeSeriesResponseType result =

 70

 port.getValuesObject(location, variable, startDate,
endDate, authToken);

 org.cuashi.wof.ws.nwis.SiteInfoType sit =
 (org.cuashi.wof.ws.nwis.SiteInfoType)
result.getTimeSeries().getSourceInfo();
 siteCode = sit.getSiteCode().get(0).getValue();
 siteName = sit.getSiteName();

 System.out.println("siteCode = "+siteCode);
 System.out.println("siteName = "+siteName);

 System.out.format "%20s %10s","DateTime","Value"); (
 System.out.println();
 List<org.cuashi.wof.ws.nwis.ValueSingleVariable> valuesList =
 result.getTimeSeries().getValues().getValue();
 for (org.cuashi.wof.ws.nwis.ValueSingleVariable value :
valuesList) {
 System.out.format("%20s %10.4f",
 value.getDateTime().toString(),value.getValue());
 System.out.println();
 }
 } catch (Exception ex) {
 // TODO handle custom exceptions here
 }

 }

With the code finished, all that is left is to compile and run the file.

12. In the Projects window, right click on nwis.java and then click Compile File.

13. In the Projects window, right click on nwis.java and then click Run File.

 71

In a moment, you will see the results of the GetValuesObject call as text in the Output window.

Congratulations! You have created a Java class which calls the NWIS web service to retrieve
time series data. This concludes the exercise.

 72

Appendix A: Source Code for parse_xml.m
% Function extracted from xmltools.m so that it could be called directly
% David Tarboton 3/19/06
% xmltools.m originally Matlab File Exchange
%
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=3074
%
function [z, str] = parse_xml(str, current_tag, current_value, attribs, idx)

next = 'child';

if nargin < 2
 current_tag = '';
 current_value = '';
 attribs = '' ;
 idx = 0;
end
z = [];

eot = 0;

while ~eot & ~isempty(udeblank(deblank(str)))

 f_end = strfind(str, '</');
 f_beg = strfind(str, '<');

 %< Si je n'ai plus de tag dans mon document
 if isempty(f_end) & isempty(f_beg)

 if ~strcmp(lower(current_tag), '?xml') & ~isempty(current_tag)
 error('xmltools:parse_xml', 'malformed xml string (current [%s])',
current_tag);
 else
 fprintf('end parsing at level %d\n',idx);
 eot = 1;
 return
 end
 end
 %>

 if isempty(f_end)
 f_end = length(str)
 else
 f_end = f_end(1);
 end
 if isempty(f_beg)
 f_beg = length(str)
 else
 f_beg = f_beg(1);
 end

 if f_end <= f_beg
 %< je rencontre une fermeture

 73

 new_tag = str((f_end+2):end);
 str_t = str(1:f_end-1);
 f_end = strfind(new_tag,'>');
 if isempty(f_end)
 error('xmltools:parse_xml', 'malformed xml string : never ending tag
[%s] encountered', current_tag);
 end
 f_end = f_end(1);
 str = new_tag(f_end+1:end); % reste
 new_tag = new_tag(1:f_end-1);
 if ~strcmp(upper(new_tag), upper(current_tag))
 error('xmltools:parse_xml', 'malformed xml string : [%s] not properly
closed (closing [%s] encountered)', current_tag, new_tag);
 end
 % fprintf('%sclose [%s]\n', repmat(' ', 2*(idx-1),1), current_tag);
 z.tag = upper(current_tag);
 z.attribs = parse_attribs(attribs);
 z.value = udeblank(deblank(sprintf('%s %s',current_value, str_t)));
 eot = 1;
 %>
 else
 %< je rencontre une ouverture
 % je vais appeler le même code sur ce qu'il y a après moi
 current_value = sprintf('%s %s', current_value, str(1:f_beg-1));
 new_tag = str(f_beg+1:end);
 f_end = strfind(new_tag,'>');
 if isempty(f_end)
 error('xmltools:parse_xml', 'malformed xml string : never ending tag
encountered');
 end
 f_end = f_end(1);
 str_t = new_tag(f_end+1:end);
 new_tag = new_tag(1:f_end-1);
 if (new_tag(end) == '/')|(new_tag(end) == '?')
 %< Self closing tag
 % Je met (temporairement!) eot à 1, cela me permet de passer quelques
lignes
 % de code tranquilement
 eot = 1;
 %>
 end
 %< Attributs
 f_beg = strfind(new_tag, ' ');
 if isempty(f_beg)
 new_attribs = '';
 if eot
 new_tag = new_tag(1:end-1);
 end
 else
 new_attribs = new_tag(f_beg+1:end);
 if eot
 new_attribs = new_attribs(1:end-1);
 end
 new_tag = new_tag(1:f_beg-1);
 end
 %>
 % fprintf('%sopen [%s]\n', repmat(' ', 2*idx,1), new_tag);

 74

 if eot
 %< If self-colsing tag
 % fprintf('%sclose [%s]\n', repmat(' ', 2*idx,1), new_tag);
 new_attribs = parse_attribs(new_attribs);
 if isfield(z, next)
 nxt = getfield(z, next);
 nxt(end+1) = struct('tag', new_tag, 'attribs', new_attribs, 'value',
'', next, []);
 z = setfield(z, next, nxt);
 %z.(next)(end+1) = struct('tag', new_tag, 'attribs', new_attribs,
'value', '', next, []);
 else
 z = setfield(z, next, struct('tag', new_tag, 'attribs', new_attribs,
'value', '', next, []));
 %z.(next) = struct('tag', new_tag, 'attribs', new_attribs, 'value', '',
next, []);
 end
 str = str_t;
 eot = 0;
 %>
 else
 %< Appel du même code sur la suite

 % et stockage du resultat dans mes children.
 % Le code met aussi à jour le string courant |str|,
 % il en enlève la partie correspondant au string que je viens de
trouver.
 [t,str] = parse_xml(str_t, new_tag, '', new_attribs, 1+idx);
 if isfield(t, next)
 nx = getfield(t, next);
 %nx = t.(next);
 else
 nx = [];
 end
 if isfield(z, next)
 nxt = getfield(z, next);
 nxt(end+1) = struct('tag', t.tag, 'attribs', t.attribs, 'value',
t.value, next, nx);
 z = setfield(z, next, nxt);
 %z.(next)(end+1) = struct('tag', t.tag, 'attribs', t.attribs, 'value',
t.value, next, nx);
 else
 z = setfield(z, next, struct('tag', t.tag, 'attribs', t.attribs, 'value',
t.value, next, nx));
 %z.(next) = struct('tag', t.tag, 'attribs', t.attribs, 'value', t.value,
next, nx);
 end

 %>
 end
 end
 %>
en d
%>

 75

%< Parse attribs
function z = parse_attribs(a)
if isempty(a)
 z = struct('name', '', 'value', '');
 return
end
b = tokens(a, ' ');
j = 1;
for i=1:length(b)
 if ~isempty(b{i})
 t = tokens(b{i}, '=');
 if length(t)==2
 u = t{2};
 if u(1)=='" '
 u = u(2:end);
 end
 if u(end)=='" '
 u = u(1:end-1);
 end
 z(j) = struct('name', upper(t{1}), 'value', u);
 else
 z(j) = struct('name', upper(a), 'value', '');
 end
 j = j +1;
 end
en d
%>

%<* Ecriture d'une structure xml
function z = write_xml(fid, xml_struct, idx)

next = 'child';

if nargin < 3
 idx = 0;
end

margin = repmat(' ',2*idx,1);

closed_tag = 1;
%< Ouverture du tag
if isfield(xml_struct, 'tag')
 closed_tag = 0;
 fprintf(fid, '%s<%s', margin, xml_struct.tag);
 %< Ecriture des attributs
 if ~isfield(xml_struct, 'attribs')
 error('xmltools:write_xml', 'malformed MATLAB xml structure : tag without
attribs');
 end
 for i=1:length(xml_struct.attribs)
 if ~isempty(xml_struct.attribs(i).name)
 fprintf(fid, ' %s="%s"', xml_struct.attribs(i).name,
xml_struct.attribs(i).value);
 end
 end
 %>

 76

 %< Gestion des Auto closed tags
 % Si le tag n'est pas auto fermé, alors |closed_tag| est à zéro
 if ~isfield(xml_struct, next)
 error('xmltools:write_xml', 'malformed MATLAB xml structure : tag without
%s', next);
 end
 if ~isfield(xml_struct, 'value')
 error('xmltools:write_xml', 'malformed MATLAB xml structure : tag without
value ; ')
 end
 if xml_struct.tag(1) == '?'
 fprintf(fid, '?>\n');
 closed_tag = 1;
 elseif isempty(getfield(xml_struct, next)) & isempty(xml_struct.value)
 %elseif isempty(xml_struct.(next)) & isempty(xml_struct.value)
 fprintf(fid, '/>\n');
 closed_tag = 1;
 else
 fprintf(fid, '>\n');
 end
 %>
end
%>

%< Ecriture de la value
if isfield(xml_struct, 'value')
 if ~isempty(xml_struct.value)
 fprintf(fid, '%s%s\n', margin, xml_struct.value);
 end
en d
%>

%< Ecriture des enfants
if ~isfield(xml_struct, next)
 error('xmltools:write_xml', 'malformed MATLAB xml structure : tag without
%s', next);
end
those_children = getfield(xml_struct, next);
%those_children = xml_struct.(next);
for i=1:length(those_children)
 write_xml(fid, those_children(i), idx+1);
end
%>

%< Fermeture du tag
if ~closed_tag
 fprintf(fid, '%s</%s>\n', margin, xml_struct.tag);
end
%>
%>*

%<* get childs with a specific tag name
function z = get_childs(z, next, tag_name);
u = getfield(z, next);

 77

zo = [];
for i=1:length(u)
 v = u(i);
 if strcmp(upper(v.tag), upper(tag_name))
 if isempty(zo)
 zo.anext= v;
 else
 zo.anext(end+1) = v;
 end
 end
end
if ~isstruct(zo)
 if isfield(z, 'tag')
 tn = z.tag;
 else
 tn = 'root?';
 end
 error('XMLTOOLS:GET-TEG', 'problem in finding tag <%s> under one <%s>',
tag_name, tn);
end
z = [zo.anext];
%>*

%< udeblank
function s = udeblank(str)
s = deblank(str(end:-1:1));
s = s(end:-1:1);
if length(s)==0
 s = '';
end
%>

%< emptystruct
function z = emptystruct(next)
z = struct('tag', [], 'value', [], 'attribs', [], next, []);
%>

%< Tokens
functio l = tokens(str,del) n
l={} ;
% Boucle sur les tokens.
del = sprintf(del) ;
while ~isempty(str)
 [tok,str] = strtok(str,del) ;
 l{end+1} = tok ;
end
%>

 78

Appendix B: Source Code for MODISPlot_xml.m

% Initialize variables.
clear values
clear dn

% Create class.
wsdl='http://water.sdsc.edu/waterOneFlow/MODIS/Service.asmx?WSDL';
createClassFromWsdl(wsdl);

% This creates an instance of the class.
svsMODIS = MODIS;

% Specify input parameters.
w='-98.2' % West longitude.
s='30' % South latitude.
e='-97.3' % East longitude.
n='30.7' % North latitude.
location=['GEOM:BOX(',w,' ',s,',',e,' ',n,')']
% Variable Code 11 = Cloud Optical Thickness Water Phase.
variableCode='MODIS:11/plotarea=land'
startDate='2004-01-01'
endDate='2004-12-01'

% Call the GetValues function to get the time series data.
xmlValues=GetValues(svsMODIS,location,variableCode, ...
 startDate,endDate,'')

% Parse the XML string.
structValues=parse_xml(xmlValues);

% Report the name and units of the chosen variable.
display(structValues.child.child(2).child(2).child(2).value)
display(structValues.child.child(2).child(2).child(3).value)

% Get the <value> tags.
Recs=structValues.child.child(2).child(3).child;
[d1,d2]=size(Recs)

% Build arrays of datetimes and values.
for i=1:d2
 % Reformat date to that Matlab can understand it.
 datetime=Recs(i).attribs(1).value;
 year=datetime(1:4);
 month=datetime(6:7);
 day=datetime(9:10);
 datetime=[month,'/',day,'/',year];
 dn(i)=datenum(datetime); % Convert to numeric date.
 % Read the time series value.
 values(i)=str2double(Recs(i).value);
end

 79

% Plot the graph.
plot(dn,values);datetick;
grid on % Turn on grid lines for this plot.

 80

Appendix C: Source Code for nwis.java Class
/*
 * nwis.java
 *
 * Created on November 10, 2006, 1:15 PM
 *
 * To change this template, choose Tools | Template Manager
 * and open the template in the editor.
 */

package wof;

import java.util.List;

public class nwis {

 /** Creates a new instance of nwis */
 public nwis() {
 }
 public static void main(String[] args){
 String siteCode = null;
 String siteName = null;

 try { // Call Web Service Operation
 org.cuashi.wof.ws.nwis.NWISDailyValues service =
 new org.cuashi.wof.ws.nwis.NWISDailyValues();
 org.cuashi.wof.ws.nwis.WaterOneFlow port =
 service.getWaterOneFlow();
 // TODO initialize WS operation arguments here
 java.lang.String location = "NWIS:10263500";
 java.lang.String variable = "NIWS:00060";
 java.lang.String startDate = "2001-01-01";
 java.lang.String endDate = "2001-12-31";
 java.lang.String authToken = "";
 // TODO process result here
 org.cuashi.wof.ws.nwis.TimeSeriesResponseType result =
 port.getValuesObject(location, variable, startDate,
endDate, authToken);

 org.cuashi.wof.ws.nwis.SiteInfoType sit =
 (org.cuashi.wof.ws.nwis.SiteInfoType)
result.getTimeSeries().getSourceInfo();
 siteCode = sit.getSiteCode().get(0).getValue();
 siteName = sit.getSiteName();

 System.out.println("siteCode = "+siteCode);
 System.out.println("siteName = "+siteName);

 System.out.format("%20s %10s","DateTime","Value");
 System.out.println();
 List<org.cuashi.wof.ws.nwis.ValueSingleVariable> valuesList =
 result.getTimeSeries().getValues().getValue();
 for (org.cuashi.wof.ws.nwis.ValueSingleVariable value :
valuesList) {

 81

 System.out.format("%20s %10.4f",
 value.getDateTime().toString(),value.getValue());
 System.out.println();
 }
 } catch (Exception ex) {
 // TODO handle custom exceptions here
 }

 }

}

 82

	Distribution
	Disclaimers
	Acknowledgements
	
	Technical Support
	1.0 Introduction
	1.1 WaterOneFlow Web Services
	1.2 WaterOneFlow Web Service Methods and Output
	1.2.1 GetSiteInfo/GetSiteInfoObject
	1.2.2 GetVariableInfo/GetVariableInfoObject
	1.2.3 GetValues/GetValuesObject

	1.3 Document Outline
	1.4 Obtaining This Workbook

	 2.0 Data Sources
	2.1 USGS National Water Information System (NWIS)
	2.2 EPA STORAGE & RETRIEVAL SYSTEM (EPA STORET)
	2.3 Moderate Resolution Imaging Spectroradiometer (MODIS)
	2.4 Daymet
	2.5 North American Mesoscale model (NAM)
	2.6 Susquehanna River Basin Hydrologic Observatory System (SRBHOS)

	 3.0 Ingesting Susquehanna River Basin Data into Excel with HydroObjects
	3.1 Introduction
	3.2 Computer Requirements
	3.3 Installation
	3.4 Downloading Susquehanna River Basin Data
	3.4.1 Specifying the Data Source
	3.4.2 Getting a List of Sites
	3.4.3 Getting a List of Variables
	3.4.4 Obtaining Site and Variable Information
	3.4.5 Getting the Site Catalog
	3.4.6 Downloading Time Series Data

	3.5 Extending this Example

	 4.0 Ingesting STORET Data into Excel with HydroObjects
	4.1 Introduction
	4.2 Computer Requirements
	4.3 Installation
	4.4 Downloading EPA STORET Data
	4.4.1 Obtaining Site and Variable Information
	4.4.2 Downloading Time Series Data

	 5.0 Ingesting Weather and Streamflow Data into ArcGIS
	5.1 Introduction
	5.2 Computer and Skill Requirements
	5.3 Installation
	5.4 Retrieving Data with Weather Downloader
	5.4.1 Opening the Map
	5.4.2 Adding Weather Downloader to ArcMap
	5.4.3 Downloading Weather Data

	5.5 Downloading Data from Other Web Services

	 6.0 Plotting MODIS Data with Matlab
	6.1 Introduction
	6.2 Computer and Skill Requirements
	6.3 Procedure
	6.3.1 Setting up the XML Parser
	6.3.2 Retrieving MODIS Data

	 7.0 Ingesting NWIS Data using VB.Net
	7.1 Introduction
	7.2 Computer and Skill Requirements
	7.3 Accessing NWIS Data with a VB.Net Windows Application
	7.3.1 Setting up the Project
	7.3.2 Creating the Web Reference
	7.3.3 Building the User Interface
	7.3.4 Writing the Code
	7.3.5 Running the Code

	 8.0 Ingesting NWIS Data Using Java
	8.1 Computer and Skill Requirements
	8.2 Procedure
	8.2.1 Creating a New Project
	8.2.2 Creating a Web Service Client
	8.2.3 Creating a Class to Consume the Web Service

	 Appendix A: Source Code for parse_xml.m
	 Appendix B: Source Code for MODISPlot_xml.m
	 Appendix C: Source Code for nwis.java Class

