
 

 

 

 

 

 

ACCESSING WATERONEFLOW WITH 

JAVA 
 

 

August 25, 2011 
 

 
 
 
 

by: 
 

Dr. Tim Whiteaker 
Center for Research in Water Resources 

The University of Texas at Austin 
 
 
 



i 

 

Distribution 

Copyright © 2011, Consortium of Universities for the Advancement of Hydrologic Science, Inc. 

All rights reserved. 

Funding 

Funding for this document was provided by the Consortium of Universities for the Advancement of Hydrologic 

Science, Inc. (CUAHSI) under National Science Foundation Grant No. EAR-0622374.  In addition, much input and 

feedback has been received from the CUAHSI Hydrologic Information System development team.  Their 

contribution is acknowledged here.



ii 

 

Table of Contents 

Introduction ................................................................................................................................................................... 1 

Creating a New Project .................................................................................................................................................. 1 

Creating a Web Service Client ....................................................................................................................................... 2 

Creating a Class To Report Flow Data ............................................................................................................................ 3 

Running the Code .......................................................................................................................................................... 6 

Appendix: Source Code for FlowReporter Class ............................................................................................................ 7 

 

 

  



1 

 

INTRODUCTION 

This walkthrough shows how to build Java classes to access streamflow data from the USGS NWIS Daily Values 

Web service.  This service conforms to CUAHSI’s WaterOneFlow standard and returns data in WaterML format.  

Once you learn how to access this service, accessing other WaterOneFlow services from the dozens of other 

organizations publishing water data using WaterOneFlow is easy since they all use the same standard.   

 

In particular, your program will obtain daily streamflow values for Big Rock Creek near Valyermo, California, for the 

year 2001.  The program will output the site name for this location and the time series of streamflow values.  Of 

course this demonstration class is very simple and perhaps not that useful, but the ideas can be extended to 

support the particular needs of your organization. 

 

Computer and Skill Requirements 

To complete this exercise, your computer must meet the following requirements: 

 Working Internet connection 

 Java Platform (JDK) 7 (http://java.sun.com/javase/downloads/)   

 NetBeans IDE 7 (http://www.netbeans.org)  

To use Web services in NetBeans, you will need the SOAP Web Services plugin.  This may have been included with 

your installation of NetBeans.   

 

To check for the SOAP Web Services plugin: 

1. In NetBeans, click Tools | Plugins. 

2. Click the Installed tab.  If you see Java Web and EE or Soap Web Services, make sure it is active.  (Soap 

Web Services is included with Java Web and EE.) 

3. If you don’t have the plugin, click the Available Plugins tab.  

4. In the Search box, enter soap. 

5. Find the SOAP Web Services plugin in the search results and click to install it. 

This exercise assumes that you have some familiarity with general programming concepts and Java. 

Note 

The source code for the FlowReporter class created in this exercise is located in the Appendix. 

CREATING A NEW PROJECT 

The main steps in this walkthrough are to create a new project, add a Web service client for the USGS NWIS Daily 

Values Web service, and create another class to use the client to access the data and display the result. 

 

To create a new project: 

1. Start NetBeans IDE. 

2. Click the File menu and then click New Project. 

http://java.sun.com/javase/downloads/
http://www.netbeans.org/


2 

 

3. In the New Project dialog, select Java in the Categories pane.  In the Projects pane, select Java Class 

Library (Figure 1). 

4. Click Next. 

5. In the New Java Class Library dialog, enter NwisExample as the Project Name. 

6. Enter the path in which you want the project folder to be created in Project Location.  The IDE will create 

a subfolder at that location called NwisExample, which will contain all files used in the project. 

7. Click Finish. 

 

Figure 1 Creating a Java Class Library 

CREATING A WEB SERVICE CLIENT 

With the project established, you will now create a client for the NWIS WaterOneFlow Web service.  The service is 

described by a file called a WSDL, which tells programs how to interact with the service and what the service can 

do.  The WSDL for the NWIS Daily Values service is located at: 

http://river.sdsc.edu/waterOneFlow/NWIS/DailyValues.asmx?WSDL   

 

The IDE will create the service client by interpreting the WSDL, resulting in a class that enables other objects in 

your program to communicate with the Web service. 

 

To create the Web service client: 

1. In the Projects pane, right-click NwisExample, point to New, and click Web Service Client (Figure 2). 

http://river.sdsc.edu/waterOneFlow/NWIS/DailyValues.asmx?WSDL


3 

 

 

Figure 2 Adding a Web Service Client 

2. In the New Web Service Client dialog, choose the WSDL URL option and enter the following URL: 

http://river.sdsc.edu/waterOneFlow/NWIS/DailyValues.asmx?WSDL  

3. For the Package, enter wof.nwis (Figure 3). 

4. Click Finish to create the class. 

 

Figure 3 Creating the Web Service Client 

CREATING A CLASS TO REPORT FLOW DATA 

In this section you will create a new class, report.FlowReporter, which accesses the Web service client you just 

created.  The class will download a time series of daily streamflow values at Big Rock Creek near Valyermo, 

California, for the year 2001.  The unique USGS identifier for this location is 10263500, and this identifier belongs 

to the NWIS network.  In CUAHSI terms, that identifier is called a site code.  Likewise, the variable code for 

streamflow is 00060, and that code belongs to the NWIS variable vocabulary.  You will hard code both of these 

values into the class.  A shorter way of saying the above is that our site is NWIS:10263500 and our variable is 

NWIS:00060.  You will also hard code the time span (the year 2001).  In a more robust application, you would let 

the user supply these parameters.  The class will output the name of the site and the time series of values. 

http://river.sdsc.edu/waterOneFlow/NWIS/DailyValues.asmx?WSDL


4 

 

Tip 

Refer to the Appendix for the source code if you get stuck. 

 

To create the FlowReporter class: 

1. In the Projects window, right-click NwisExample, point to New, and click Java Class. 

2. In the New Java Class dialog, enter FlowReporter as the Class Name, and report as the Package. 

3. Click Finish. 

The class is created, and code for the class is shown in the code pane.  Now you will add a method to make the 

Web service requests.  Fortunately, the IDE can create the code for you. 

 

To create the method that accesses the Web service client: 

1. Right-click in the code for FlowReporter (e.g., after the open brace following the FlowReporter class 

declaration) and click Insert Code (Figure 4).   

 

Figure 4 Inserting code 

2. In the menu that opens, click Call Web Service Operation.   

3. In the Select Operations to Invoke dialog, expand the tree for WaterOneFlow SOAP and select 

GetValuesObject. 

4. Click OK. 

After you click OK, the IDE generates code for calling the GetValuesObject method from the NWIS Web service.  

The method includes parameters (e.g., location) that will be sent to the service. 

 

Now you will program a “main” method, which is the default method that runs when the class is invoked.   

 

To program the main method: 

1. In the source code for the FlowReporter class, add the following code. 

public static void main(String[] args) { 

} 

Figure 5 shows the result. 

 



5 

 

 

Figure 5 FlowReporter class and its methods 

Now you will hard code the parameters for our site of interest, namely:   

 location – the network name and site code for the site of interest, i.e., NWIS:10263500 

 variable – the vocabulary and variable code for the variable of interest, i.e., NWIS:00060 

 startDate – 2001-01-01 

 endDate – 2001-12-31 

 authToken – Token required for data access. This service is public, so the token can be blank. 

Remember, you are hard coding these parameters for this simple example application, but a more robust 

application would read these parameters as inputs from the user. 

2. In the main method, add the code below to define the parameters for time series retrieval. 

String location = "NWIS:10263500"; 

String variable = "NWIS:00060"; 

String startDate = "2001-01-01"; 

String endDate = "2001-12-31"; 

String authToken = ""; 

A screenshot from the code editor is shown below. 

 

 

Figure 6 Specifying query parameters 

 You will now download the time series and output the site name to the Output window in the IDE. 

3. To the end of the main procedure, add the following code. 

// Download time series object 

TimeSeriesResponseType result = getValuesObject( 

        location, variable, startDate, endDate, authToken); 



6 

 

         

// Show site name 

wof.nwis.SiteInfoType site = (wof.nwis.SiteInfoType)  

        result.getTimeSeries().getSourceInfo(); 

System.out.println("Site name = " + site.getSiteName()); 

The code above calls the getValuesObject method to return a time series object from the Web service.  This object 

contains the time series values and also important metadata such as descriptions of the site and variable 

associated with the values.  Then the code assigns the source info from the time series object to a site object.  The 

source info must be cast as a SiteInfoType because source info could be one of several types such as sites or 

regions in space.  Finally, the code prints the site name to the IDE Output window. 

 

To output the datetimes and values in the time series, you will use a List object. 

4. Just above the existing import statement for wof.nwis.TimeSeriesResponseType, add an import statement 

for the List library as in the code below. 

import java.util.List; 

5. In the code for the main method, append the following code. 

// Make a header for showing datetimes and values 

System.out.format("%20s %10s", "DateTime", "Value"); 

System.out.println(); 

 

// Show datetimes and values 

List<wof.nwis.ValueSingleVariable> values =   

    result.getTimeSeries().getValues().getValue(); 

 

for (wof.nwis.ValueSingleVariable value : values ) { 

    System.out.format("%20s %10.4f", 

            value.getDateTime().toString(), value.getValue()); 

    System.out.println(); 

} 

The code above prints a header for showing datetimes and values in the Output window.  Then it accesses the 

value list from the time series object.  Then it loops through each value and prints the result to the Output window. 

6. Click the File menu and then click Save All. 

With the code finished, all that is left is to compile and run the file. 

RUNNING THE CODE 

To test service access, you’ll run the code in the FlowReporter class.  Let’s make sure things are running smoothly 

by cleaning and building the project before running the FlowReporter code. 



7 

 

1. In the Projects window, right-click NwisExample and then click Clean and Build. 

2. In the Projects window, right-click FlowReporter.java and then click Run File. 

In a moment, you will see the results of the Web service request as text in the Output window (Figure 7).  The flow 

values are in cubic feet per second, which you can also determine from the time series object.  We left it out of this 

exercise to keep things simple. 

 

 

Figure 7 Output from FlowReporter 

Congratulations!  You have created a Java class which calls the NWIS Web service to retrieve time series data.  This 

concludes the exercise. 

APPENDIX: SOURCE CODE FOR FLOWREPORTER CLASS 

package report; 

 

import java.util.List; 

import wof.nwis.TimeSeriesResponseType; 

 

/** 

 * 

 * @author CUAHSI 

 */ 

public class FlowReporter { 

 

    private static TimeSeriesResponseType getValuesObject( 

            java.lang.String location, java.lang.String variable,  

            java.lang.String startDate, java.lang.String endDate,  

            java.lang.String authToken) { 

 

        wof.nwis.WaterOneFlow service = new wof.nwis.WaterOneFlow(); 

        wof.nwis.WaterOneFlowSoap port = service.getWaterOneFlowSoap(); 

        return port.getValuesObject( 

                location, variable, startDate, endDate, authToken); 

    } 

 

    public static void main(String[] args) { 

        String location = "NWIS:10263500"; 

        String variable = "NWIS:00060"; 

        String startDate = "2001-01-01"; 

        String endDate = "2001-12-31"; 



8 

 

        String authToken = ""; 

 

        // Download time series object 

        TimeSeriesResponseType result = getValuesObject( 

            location, variable, startDate, endDate, authToken); 

         

        // Show site name 

        wof.nwis.SiteInfoType site = (wof.nwis.SiteInfoType)  

            result.getTimeSeries().getSourceInfo(); 

        System.out.println("Site name = " + site.getSiteName()); 

 

        // Make a header for showing datetimes and values 

        System.out.format("%20s %10s", "DateTime", "Value"); 

        System.out.println(); 

         

        // Show datetimes and values 

        List<wof.nwis.ValueSingleVariable> values =   

            result.getTimeSeries().getValues().getValue(); 

 

        for (wof.nwis.ValueSingleVariable value : values ) { 

            System.out.format("%20s %10.4f", 

                    value.getDateTime().toString(), value.getValue()); 

            System.out.println(); 

        } 

    } 

     

} 


